Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
Department of Electrical & Computer Engineering, Boise State University, Boise, ID 83725, USA.
Nanoscale. 2017 Jul 27;9(29):10205-10211. doi: 10.1039/c7nr00928c.
Recent results in the assembly of DNA into structures and arrays with nanoscale features and patterns have opened the possibility of using DNA for sub-10 nm lithographic patterning of semiconductor devices. Super-resolution microscopy is being actively developed for DNA-based imaging and is compatible with inline optical metrology techniques for high volume manufacturing. Here, we combine DNA tile assembly with state-dependent super-resolution microscopy to introduce crystal-PAINT as a novel approach for metrology of DNA arrays. Using this approach, we demonstrate optical imaging and characterization of DNA arrays revealing grain boundaries and the temperature dependence of array quality. For finite arrays, analysis of crystal-PAINT images provides further quantitative information of array properties. This metrology approach enables defect detection and classification and facilitates statistical analysis of self-assembled DNA nanostructures.
最近在将 DNA 组装成具有纳米级特征和图案的结构和阵列方面的成果,为使用 DNA 对半导体器件进行亚 10nm 光刻图形化开辟了可能性。超分辨率显微镜正在被积极开发用于基于 DNA 的成像,并且与用于大批量制造的在线光学计量技术兼容。在这里,我们将 DNA 瓦片组装与状态相关的超分辨率显微镜相结合,引入晶体-PAINT 作为 DNA 阵列计量的新方法。使用这种方法,我们展示了 DNA 阵列的光学成像和表征,揭示了晶界和阵列质量对温度的依赖性。对于有限的阵列,晶体-PAINT 图像的分析提供了关于阵列性质的进一步定量信息。这种计量方法可以实现缺陷检测和分类,并促进自组装 DNA 纳米结构的统计分析。