Graugnard Elton, Hughes William L, Jungmann Ralf, Kostiainen Mauri A, Linko Veikko
Micron School of Materials Science & Engineering, Boise State University, USA.
Ludwig Maximilian University Munich, Max Planck Institute of Biochemistry, Germany.
MRS Bull. 2017 Dec;42(12):951-959. doi: 10.1557/mrs.2017.274. Epub 2017 Dec 8.
Structural DNA nanotechnology is revolutionizing the ways researchers construct arbitrary shapes and patterns in two and three dimensions on the nanoscale. Through Watson-Crick base pairing, DNA can be programmed to form nanostructures with high predictability, addressability, and yield. The ease with which structures can be designed and created has generated great interest for using DNA for a variety of metrology applications, such as in scanning probe microscopy and super-resolution imaging. An additional advantage of the programmable nature of DNA is that mechanisms for nanoscale metrology of the structures can be integrated within the DNA objects by design. This programmable structure-property relationship provides a powerful tool for developing nanoscale materials and smart rulers.
结构DNA纳米技术正在彻底改变研究人员在纳米尺度上二维和三维构建任意形状和图案的方式。通过沃森-克里克碱基配对,DNA可以被编程形成具有高可预测性、可寻址性和产量的纳米结构。结构易于设计和创建,这使得人们对将DNA用于各种计量应用产生了浓厚兴趣,例如扫描探针显微镜和超分辨率成像。DNA可编程性质的另一个优点是,可以通过设计将结构的纳米尺度计量机制集成到DNA物体中。这种可编程的结构-性质关系为开发纳米材料和智能标尺提供了一个强大的工具。