Suppr超能文献

基于多期MRI的肝细胞癌经动脉化疗栓塞术治疗反应的多算法预处理预测分析

Multi-algorithms analysis for pre-treatment prediction of response to transarterial chemoembolization in hepatocellular carcinoma on multiphase MRI.

作者信息

Chen Mingzhen, Kong Chunli, Qiao Enqi, Chen Yaning, Chen Weiyue, Jiang Xiaole, Fang Shiji, Zhang Dengke, Chen Minjiang, Chen Weiqian, Ji Jiansong

机构信息

Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000, China.

Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.

出版信息

Insights Imaging. 2023 Feb 28;14(1):38. doi: 10.1186/s13244-023-01380-2.

Abstract

OBJECTIVES

This study compared the accuracy of predicting transarterial chemoembolization (TACE) outcomes for hepatocellular carcinoma (HCC) patients in the four different classifiers, and comprehensive models were constructed to improve predictive performance.

METHODS

The subjects recruited for this study were HCC patients who had received TACE treatment from April 2016 to June 2021. All participants underwent enhanced MRI scans before and after intervention, and pertinent clinical information was collected. Registry data for the 144 patients were randomly assigned to training and test datasets. The robustness of the trained models was verified by another independent external validation set of 28 HCC patients. The following classifiers were employed in the radiomics experiment: machine learning classifiers k-nearest neighbor (KNN), support vector machine (SVM), the least absolute shrinkage and selection operator (Lasso), and deep learning classifier deep neural network (DNN).

RESULTS

DNN and Lasso models were comparable in the training set, while DNN performed better in the test set and the external validation set. The CD model (Clinical & DNN merged model) achieved an AUC of 0.974 (95% CI: 0.951-0.998) in the training set, superior to other models whose AUCs varied from 0.637 to 0.943 (p < 0.05). The CD model generalized well on the test set (AUC = 0.831) and external validation set (AUC = 0.735).

CONCLUSIONS

DNN model performs better than other classifiers in predicting TACE response. Integrating with clinically significant factors, the CD model may be valuable in pre-treatment counseling of HCC patients who may benefit the most from TACE intervention.

摘要

目的

本研究比较了四种不同分类器预测肝细胞癌(HCC)患者经动脉化疗栓塞术(TACE)结局的准确性,并构建综合模型以提高预测性能。

方法

本研究招募的受试者为2016年4月至2021年6月期间接受TACE治疗的HCC患者。所有参与者在干预前后均接受增强MRI扫描,并收集相关临床信息。将144例患者的登记数据随机分配到训练集和测试集。通过另一个由28例HCC患者组成的独立外部验证集验证训练模型的稳健性。放射组学实验采用了以下分类器:机器学习分类器k近邻(KNN)、支持向量机(SVM)、最小绝对收缩和选择算子(Lasso)以及深度学习分类器深度神经网络(DNN)。

结果

DNN模型和Lasso模型在训练集中表现相当,而DNN模型在测试集和外部验证集中表现更好。CD模型(临床与DNN合并模型)在训练集中的AUC为0.974(95%CI:0.951 - 0.998),优于其他AUC在0.637至0.943之间的模型(p < 0.05)。CD模型在测试集(AUC = 0.831)和外部验证集(AUC = 0.735)上具有良好的泛化能力。

结论

DNN模型在预测TACE反应方面比其他分类器表现更好。结合具有临床意义的因素,CD模型可能对那些可能从TACE干预中获益最大的HCC患者的治疗前咨询有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/048c/9975141/989f7cd1df68/13244_2023_1380_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验