Suppr超能文献

利用超临界CO2溶液增强分散法制备玉米醇溶蛋白纳米颗粒并通过计算流体动力学进行阐释

Preparation of zein nanoparticles by using solution-enhanced dispersion with supercritical CO and elucidation with computational fluid dynamics.

作者信息

Li Sining, Zhao Yaping

机构信息

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Int J Nanomedicine. 2017 May 2;12:3485-3494. doi: 10.2147/IJN.S135239. eCollection 2017.

Abstract

Nanoparticles have attracted more and more attention in the medicinal field. Zein is a biomacromolecule and can be used as a carrier for delivering active ingredients to prepare controlled release drugs. In this article, we presented the preparation of zein nanoparticles by solution-enhanced dispersion by supercritical CO (SEDS) approach. Scanning electron microscopy and transmission electron microscopy were applied to characterize the size and morphology of the obtained particles. The nozzle structure and the CO flow rate greatly affected the morphology and the size of the particles. The size of zein was able to be reduced to 50-350 nm according to the different conditions. The morphologies of the resultant zein were either sphere or the filament network consisted of nanoparticles. The influence of the nozzle structure and the CO flow rate on the velocity field was elucidated by using computational fluid dynamics. The nozzle structure and the CO flow rate greatly affected the distribution of the velocity field. However, a similar velocity field could also be obtained when the nozzle structure or the CO flow rate, or both were different. Therefore, the influence of the nozzle structure and the CO flow rate on the size and morphology of the particles, can boil down to the velocity field. The results demonstrated that the velocity field can be a potential criterion for producing nanoparticles with controllable morphology and size, which is useful to scale-up the SEDS process.

摘要

纳米颗粒在医药领域已引起越来越多的关注。玉米醇溶蛋白是一种生物大分子,可作为载体用于递送活性成分以制备控释药物。在本文中,我们介绍了通过超临界CO溶液增强分散法(SEDS)制备玉米醇溶蛋白纳米颗粒的方法。应用扫描电子显微镜和透射电子显微镜来表征所获得颗粒的尺寸和形态。喷嘴结构和CO流速对颗粒的形态和尺寸有很大影响。根据不同条件,玉米醇溶蛋白的尺寸能够减小至50 - 350纳米。所得玉米醇溶蛋白的形态要么是球形,要么是由纳米颗粒组成的丝状网络。通过计算流体动力学阐明了喷嘴结构和CO流速对速度场的影响。喷嘴结构和CO流速对速度场的分布有很大影响。然而,当喷嘴结构或CO流速或两者都不同时,也可以获得相似的速度场。因此,喷嘴结构和CO流速对颗粒尺寸和形态的影响可归结为速度场。结果表明,速度场可以作为制备具有可控形态和尺寸的纳米颗粒的潜在标准,这对于扩大SEDS工艺规模很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2209/5422457/d6b3a7fa90e9/ijn-12-3485Fig1.jpg

相似文献

3
Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2.
Int J Nanomedicine. 2015 Apr 29;10:3171-81. doi: 10.2147/IJN.S80434. eCollection 2015.
5
Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3.
J Agric Food Chem. 2012 Jan 25;60(3):836-43. doi: 10.1021/jf204194z. Epub 2012 Jan 9.
7
Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study.
Colloids Surf B Biointerfaces. 2011 Jul 1;85(2):145-52. doi: 10.1016/j.colsurfb.2011.02.020. Epub 2011 Feb 26.
10
Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process.
AAPS PharmSciTech. 2015 Dec;16(6):1263-9. doi: 10.1208/s12249-014-0264-y. Epub 2015 Mar 14.

引用本文的文献

1
Research advances in Zein-based nano-delivery systems.
Front Nutr. 2024 May 9;11:1379982. doi: 10.3389/fnut.2024.1379982. eCollection 2024.
2
Zein-based nanoparticles: Preparation, characterization, and pharmaceutical application.
Front Pharmacol. 2023 Feb 1;14:1120251. doi: 10.3389/fphar.2023.1120251. eCollection 2023.
4
Zein Microparticles and Nanoparticles as Drug Delivery Systems.
Polymers (Basel). 2022 May 27;14(11):2172. doi: 10.3390/polym14112172.

本文引用的文献

2
Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting.
Int J Pharm. 2011 Feb 14;404(1-2):317-23. doi: 10.1016/j.ijpharm.2010.11.025. Epub 2010 Nov 19.
3
Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy.
Int J Pharm. 2011 Jan 17;403(1-2):192-200. doi: 10.1016/j.ijpharm.2010.10.012. Epub 2010 Oct 15.
4
Effect of the spraying conditions and nozzle design on the shape and size distribution of particles obtained with supercritical fluid drying.
Eur J Pharm Biopharm. 2008 Sep;70(1):389-401. doi: 10.1016/j.ejpb.2008.03.020. Epub 2008 Apr 11.
5
Preparation of PLLA/PLGA microparticles using solution enhanced dispersion by supercritical fluids (SEDS).
J Colloid Interface Sci. 2008 Jun 1;322(1):87-94. doi: 10.1016/j.jcis.2008.02.031. Epub 2008 Apr 9.
6
The properties of bufadienolides-loaded nano-emulsion and submicro-emulsion during lyophilization.
Int J Pharm. 2008 Feb 12;349(1-2):291-9. doi: 10.1016/j.ijpharm.2007.08.011. Epub 2007 Aug 19.
7
Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
Lab Chip. 2006 Mar;6(3):437-46. doi: 10.1039/b510841a. Epub 2006 Jan 25.
9
Dynamic pattern formation in a vesicle-generating microfluidic device.
Phys Rev Lett. 2001 Apr 30;86(18):4163-6. doi: 10.1103/PhysRevLett.86.4163.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验