Barskiy Danila A, Shchepin Roman V, Tanner Christian P N, Colell Johannes F P, Goodson Boyd M, Theis Thomas, Warren Warren S, Chekmenev Eduard Y
Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee, 37232-2310, United States.
Departments of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA.
Chemphyschem. 2017 Jun 20;18(12):1493-1498. doi: 10.1002/cphc.201700416. Epub 2017 May 18.
Nuclear spin hyperpolarization techniques are revolutionizing the field of C molecular MRI. While dissolution dynamic nuclear polarization (d-DNP) is currently the leading technique, it is generally slow (requiring ≈1 h) and costly (≈$USD10 ). As a consequence of carbon's central place in biochemistry, tremendous progress using C d-DNP bioimaging has been demonstrated to date including a number of clinical trials. Despite numerous attempts to develop alternatives to d-DNP, the competing methods have faced significant translational challenges. Efficient hyperpolarization of N, P, and other heteronuclei using signal amplification by reversible exchange (SABRE) has been reported in 2015, but extension of this technique to C has proven to be challenging. Here, we present efficient hyperpolarization of C nuclei using micro-Tesla SABRE. Up to ca. 6700-fold enhancement of nuclear spin polarization at 8.45 T is achieved within seconds, corresponding to P ≈4.4 % using 50 % parahydrogen (P >14 % would be feasible using more potent ≈100 % parahydrogen). Importantly, the C polarization achieved via SABRE strongly depends not only upon spin-lattice relaxation, but also upon the presence of N (I=1/2) versus quadrupolar N (I=1) spins in the site binding the hexacoordinate Ir atom of the catalytic complex. We show that different C nuclei in the test molecular frameworks-pyridine and acetonitrile-can be hyperpolarized, including C sites up to five chemical bonds away from the exchangeable hydrides. The presented approach is highly scalable and can be applied to a rapidly growing number of biomolecules amendable to micro-Tesla SABRE.
核自旋超极化技术正在彻底改变碳分子磁共振成像领域。虽然溶解动态核极化(d-DNP)目前是领先技术,但它通常速度较慢(需要约1小时)且成本高昂(约10美元)。由于碳在生物化学中的核心地位,迄今为止,使用碳d-DNP生物成像已取得了巨大进展,包括多项临床试验。尽管人们多次尝试开发d-DNP的替代方法,但竞争方法面临着重大的转化挑战。2015年报道了利用可逆交换信号放大(SABRE)对氮、磷和其他异核进行高效超极化,但将该技术扩展到碳已被证明具有挑战性。在此,我们展示了利用微特斯拉SABRE对碳核进行高效超极化。在8.45 T下,数秒内实现了高达约6700倍的核自旋极化增强,使用50%的仲氢时对应于P≈4.4%(使用更强效的约100%仲氢时P>14%将是可行的)。重要的是,通过SABRE实现的碳极化不仅强烈依赖于自旋晶格弛豫,还依赖于在催化复合物六配位铱原子结合位点中氮(I = 1/2)与四极氮(I = 1)自旋的存在情况。我们表明,测试分子框架(吡啶和乙腈)中的不同碳核可以被超极化,包括距离可交换氢化物多达五个化学键的碳位点。所提出的方法具有高度可扩展性,可应用于越来越多适用于微特斯拉SABRE的生物分子。