Suppr超能文献

SLIC-SABRE 超极化 N-标记吡啶和烟酰胺的 NMRI 研究。

N MRI of SLIC-SABRE Hyperpolarized N-Labelled Pyridine and Nicotinamide.

机构信息

International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia.

Novosibirsk State University, 2 Pirogova st., Novosibirsk, 630090, Russia.

出版信息

Chemistry. 2019 Jun 26;25(36):8465-8470. doi: 10.1002/chem.201900430. Epub 2019 May 27.

Abstract

Magnetic Resonance Imaging (MRI) is a powerful non-invasive diagnostic method extensively used in biomedical studies. A significant limitation of MRI is its relatively low signal-to-noise ratio, which can be increased by hyperpolarizing nuclear spins. One promising method is Signal Amplification By Reversible Exchange (SABRE), which employs parahydrogen as a source of hyperpolarization. Recent studies demonstrated the feasibility to improve MRI sensitivity with this hyperpolarization technique. Hyperpolarized N nuclei in biomolecules can potentially retain their spin alignment for tens of minutes, providing an extended time window for the utilization of the hyperpolarized compounds. In this work, we demonstrate for the first time that radio-frequency-based SABRE hyperpolarization techniques can be used to obtain N MRI of biomolecule 1- N-nicotinamide. Two image acquisition strategies were utilized and compared: Single Point Imaging (SPI) and Fast Low Angle SHot (FLASH). These methods demonstrated opportunities of high-field SABRE for biomedical applications.

摘要

磁共振成像(MRI)是一种广泛应用于生物医学研究的强大的非侵入性诊断方法。MRI 的一个显著限制是其相对较低的信噪比,可以通过极化核自旋来提高。一种很有前途的方法是信号放大通过可逆交换(SABRE),它使用仲氢作为极化的来源。最近的研究表明,利用这种极化技术可以提高 MRI 的灵敏度。生物分子中的 N 核有可能在几十分钟内保持其自旋排列,为利用高极化化合物提供了一个扩展的时间窗口。在这项工作中,我们首次证明了基于射频的 SABRE 极化技术可用于获得生物分子 1-N-烟酰胺的 N MRI。利用了两种图像采集策略并进行了比较:单点成像(SPI)和快速低角度 SHot(FLASH)。这些方法展示了高场 SABRE 在生物医学应用中的机会。

相似文献

1
N MRI of SLIC-SABRE Hyperpolarized N-Labelled Pyridine and Nicotinamide.
Chemistry. 2019 Jun 26;25(36):8465-8470. doi: 10.1002/chem.201900430. Epub 2019 May 27.
2
Microtesla SABRE enables 10% nitrogen-15 nuclear spin polarization.
J Am Chem Soc. 2015 Feb 4;137(4):1404-7. doi: 10.1021/ja512242d. Epub 2015 Jan 26.
3
A versatile synthetic route to the preparation of N heterocycles.
J Labelled Comp Radiopharm. 2019 Nov;62(13):892-902. doi: 10.1002/jlcr.3699. Epub 2019 Jan 7.
4
The Absence of Quadrupolar Nuclei Facilitates Efficient C Hyperpolarization via Reversible Exchange with Parahydrogen.
Chemphyschem. 2017 Jun 20;18(12):1493-1498. doi: 10.1002/cphc.201700416. Epub 2017 May 18.
6
Hyperpolarization of common antifungal agents with SABRE.
Magn Reson Chem. 2021 Dec;59(12):1225-1235. doi: 10.1002/mrc.5187. Epub 2021 Jun 20.
7
Imaging of Biomolecular NMR Signals Amplified by Reversible Exchange with Parahydrogen Inside an MRI Scanner.
J Phys Chem C Nanomater Interfaces. 2017 Nov 22;121(46):25994-25999. doi: 10.1021/acs.jpcc.7b10549. Epub 2017 Nov 1.
8
In situ and ex situ low-field NMR spectroscopy and MRI endowed by SABRE hyperpolarization.
Chemphyschem. 2014 Dec 15;15(18):4100-7. doi: 10.1002/cphc.201402607. Epub 2014 Nov 3.
9
N Hyperpolarization of Dalfampridine at Natural Abundance for Magnetic Resonance Imaging.
Chemistry. 2019 Oct 1;25(55):12694-12697. doi: 10.1002/chem.201902724. Epub 2019 Sep 9.
10
Efficient Synthesis of Nicotinamide-1-¹⁵N for Ultrafast NMR Hyperpolarization Using Parahydrogen.
Bioconjug Chem. 2016 Apr 20;27(4):878-82. doi: 10.1021/acs.bioconjchem.6b00148. Epub 2016 Mar 24.

引用本文的文献

1
High H Solubility of Perfluorocarbon Solvents and Their Use in Reversible Polarization Transfer from -Hydrogen.
J Phys Chem Lett. 2025 Jan 16;16(2):510-517. doi: 10.1021/acs.jpclett.4c03190. Epub 2025 Jan 5.
2
Molecules, Up Your Spins!
Molecules. 2024 Apr 17;29(8):1821. doi: 10.3390/molecules29081821.
3
C MRI of hyperpolarized pyruvate at 120 µT.
Sci Rep. 2024 Feb 23;14(1):4468. doi: 10.1038/s41598-024-54770-x.
4
Nitrogen-15 dynamic nuclear polarization of nicotinamide derivatives in biocompatible solutions.
Sci Adv. 2023 Aug 25;9(34):eadd3643. doi: 10.1126/sciadv.add3643. Epub 2023 Aug 23.
5
LIGHT-SABRE Hyperpolarizes 1-C-Pyruvate Continuously without Magnetic Field Cycling.
J Phys Chem C Nanomater Interfaces. 2023 Apr 4;127(14):6744-6753. doi: 10.1021/acs.jpcc.3c01128. eCollection 2023 Apr 13.
6
Subsecond Three-Dimensional Nitrogen-15 Magnetic Resonance Imaging Facilitated by Parahydrogen-Based Hyperpolarization.
J Phys Chem Lett. 2022 Nov 10;13(44):10253-10260. doi: 10.1021/acs.jpclett.2c02705. Epub 2022 Oct 27.
7
Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions.
Biosensors (Basel). 2022 Jun 30;12(7):478. doi: 10.3390/bios12070478.
8
Toward Optimizing and Understanding Reversible Hyperpolarization of Lactate Esters Relayed from -Hydrogen.
J Phys Chem Lett. 2022 Jul 28;13(29):6859-6866. doi: 10.1021/acs.jpclett.2c01442. Epub 2022 Jul 21.
9
Real-Time High-Sensitivity Reaction Monitoring of Important Nitrogen-Cycle Synthons by N Hyperpolarized Nuclear Magnetic Resonance.
J Am Chem Soc. 2022 May 18;144(19):8756-8769. doi: 10.1021/jacs.2c02619. Epub 2022 May 4.

本文引用的文献

1
F Hyperpolarization of N-3-F-Pyridine Via Signal Amplification by Reversible Exchange.
J Phys Chem C Nanomater Interfaces. 2018 Oct 11;122(40):23002-23010. doi: 10.1021/acs.jpcc.8b06654. Epub 2018 Sep 18.
2
Imaging of Biomolecular NMR Signals Amplified by Reversible Exchange with Parahydrogen Inside an MRI Scanner.
J Phys Chem C Nanomater Interfaces. 2017 Nov 22;121(46):25994-25999. doi: 10.1021/acs.jpcc.7b10549. Epub 2017 Nov 1.
3
High-throughput continuous-flow system for SABRE hyperpolarization.
J Magn Reson. 2019 Mar;300:8-17. doi: 10.1016/j.jmr.2019.01.003. Epub 2019 Jan 14.
4
Facile Removal of Homogeneous SABRE Catalysts for Purifying Hyperpolarized Metronidazole, a Potential Hypoxia Sensor.
J Phys Chem C Nanomater Interfaces. 2018 Jul 26;122(29):16848-16852. doi: 10.1021/acs.jpcc.8b05758. Epub 2018 Jun 26.
5
Chemical Exchange Reaction Effect on Polarization Transfer Efficiency in SLIC-SABRE.
J Phys Chem A. 2018 Nov 21;122(46):9107-9114. doi: 10.1021/acs.jpca.8b07163. Epub 2018 Nov 9.
6
Quasi-Resonance Signal Amplification by Reversible Exchange.
J Phys Chem Lett. 2018 Oct 18;9(20):6136-6142. doi: 10.1021/acs.jpclett.8b02669. Epub 2018 Oct 10.
7
In vivo 13C-MRI using SAMBADENA.
PLoS One. 2018 Jul 12;13(7):e0200141. doi: 10.1371/journal.pone.0200141. eCollection 2018.
8
More Than 12 % Polarization and 20 Minute Lifetime of N in a Choline Derivative Utilizing Parahydrogen and a Rhodium Nanocatalyst in Water.
Angew Chem Int Ed Engl. 2018 Aug 13;57(33):10692-10696. doi: 10.1002/anie.201804185. Epub 2018 Jul 9.
9
Hyperpolarized NMR Spectroscopy: d-DNP, PHIP, and SABRE Techniques.
Chem Asian J. 2018 May 23. doi: 10.1002/asia.201800551.
10
Rapid Catalyst Capture Enables Metal-Free para-Hydrogen-Based Hyperpolarized Contrast Agents.
J Phys Chem Lett. 2018 Jun 7;9(11):2721-2724. doi: 10.1021/acs.jpclett.8b01007. Epub 2018 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验