Suppr超能文献

磁共振成像扫描仪内通过与仲氢可逆交换放大的生物分子核磁共振信号的成像。

Imaging of Biomolecular NMR Signals Amplified by Reversible Exchange with Parahydrogen Inside an MRI Scanner.

作者信息

Kovtunov Kirill V, Kidd Bryce E, Salnikov Oleg G, Bales Liana B, Gemeinhardt Max E, Gesiorski Jonathan, Shchepin Roman V, Chekmenev Eduard Y, Goodson Boyd M, Koptyug Igor V

机构信息

International Tomography Center SB RAS, Novosibirsk, 630090, Russia.

Novosibirsk State University, Novosibirsk, 630090, Russia.

出版信息

J Phys Chem C Nanomater Interfaces. 2017 Nov 22;121(46):25994-25999. doi: 10.1021/acs.jpcc.7b10549. Epub 2017 Nov 1.

Abstract

The Signal Amplification by Reversible Exchange (SABRE) technique employs exchange with singlet-state parahydrogen to efficiently generate high levels of nuclear spin polarization. Spontaneous SABRE has been shown previously to be efficient in the milli-Tesla and micro-Tesla regimes. We have recently demonstrated that high-field SABRE is also possible, where proton sites of molecules that are able to reversibly coordinate to a metal center can be hyperpolarized directly within high-field magnets, potentially offering the convenience of hyperpolarization-based spectroscopy and imaging without sample shuttling. Here, we show efficient polarization transfer from parahydrogen (-H) to the N atoms of imidazole-N and nicotinamide-N achieved via high-field SABRE (HF-SABRE). Spontaneous transfer of spin order from the -H protons to N atoms at the high magnetic field of an MRI scanner allows one not only to record enhanced N NMR spectra of hyperpolarized biomolecules, but also to perform imaging using conventional MRI sequences. 2D N MRI of high-field SABRE-hyperpolarized imidazole with spatial resolution of 0.3×0.3 mm at 9.4 T magnetic field and a high signal-to-noise ratio (SNR) of ~99 was demonstrated. We show that H MRI of HF-SABRE hyperpolarized biomolecules (. imidazole-N) is also feasible. Taken together, these results show that heteronuclear (N) and H spectroscopic detection and imaging of high-field-SABRE-hyperpolarized molecules are promising tools for a number of emerging applications.

摘要

可逆交换信号放大(SABRE)技术利用与单重态仲氢的交换来高效产生高水平的核自旋极化。此前已证明自发SABRE在毫特斯拉和微特斯拉磁场强度范围内是有效的。我们最近证明了高场SABRE也是可行的,即能够与金属中心可逆配位的分子的质子位点可以在高场磁体中直接实现超极化,这有可能提供无需样品传输的基于超极化的光谱学和成像的便利。在此,我们展示了通过高场SABRE(HF-SABRE)实现从仲氢(-H)到咪唑-N和烟酰胺-N的N原子的高效极化转移。在MRI扫描仪的高磁场下,自旋序从-H质子自发转移到N原子,这不仅使人们能够记录超极化生物分子增强的N NMR谱,还能使用传统的MRI序列进行成像。展示了在9.4 T磁场下空间分辨率为0.3×0.3 mm且高信噪比(SNR)约为99的高场SABRE超极化咪唑的二维N MRI。我们表明HF-SABRE超极化生物分子(如咪唑-N)的H MRI也是可行的。综上所述,这些结果表明高场-SABRE-超极化分子的异核(N)和H光谱检测及成像对于许多新兴应用来说是很有前景的工具。

相似文献

1
Imaging of Biomolecular NMR Signals Amplified by Reversible Exchange with Parahydrogen Inside an MRI Scanner.
J Phys Chem C Nanomater Interfaces. 2017 Nov 22;121(46):25994-25999. doi: 10.1021/acs.jpcc.7b10549. Epub 2017 Nov 1.
2
F Hyperpolarization of N-3-F-Pyridine Via Signal Amplification by Reversible Exchange.
J Phys Chem C Nanomater Interfaces. 2018 Oct 11;122(40):23002-23010. doi: 10.1021/acs.jpcc.8b06654. Epub 2018 Sep 18.
3
In situ and ex situ low-field NMR spectroscopy and MRI endowed by SABRE hyperpolarization.
Chemphyschem. 2014 Dec 15;15(18):4100-7. doi: 10.1002/cphc.201402607. Epub 2014 Nov 3.
4
Spin-Lattice Relaxation of Hyperpolarized Metronidazole in Signal Amplification by Reversible Exchange in Micro-Tesla Fields.
J Phys Chem C Nanomater Interfaces. 2018 Mar 8;122(9):4984-4996. doi: 10.1021/acs.jpcc.8b00283. Epub 2018 Feb 27.
5
SABRE hyperpolarized anticancer agents for use in H MRI.
Magn Reson Med. 2022 Jul;88(1):11-27. doi: 10.1002/mrm.29166. Epub 2022 Mar 7.
6
Analysis of Complex Mixtures by Chemosensing NMR Using -Hydrogen-Induced Hyperpolarization.
Acc Chem Res. 2022 Jul 5;55(13):1832-1844. doi: 10.1021/acs.accounts.1c00796. Epub 2022 Jun 16.
7
Hyperpolarization of cis- N -Azobenzene by Parahydrogen at Ultralow Magnetic Fields*.
Chemphyschem. 2021 Jul 16;22(14):1527-1534. doi: 10.1002/cphc.202100160. Epub 2021 Jun 8.
8
Decoupled LIGHT-SABRE variants allow hyperpolarization of asymmetric SABRE systems at an arbitrary field.
J Magn Reson. 2019 Oct;307:106577. doi: 10.1016/j.jmr.2019.106577. Epub 2019 Aug 17.
9
N Hyperpolarization of Imidazole-N for Magnetic Resonance pH Sensing via SABRE-SHEATH.
ACS Sens. 2016 Jun 24;1(6):640-644. doi: 10.1021/acssensors.6b00231. Epub 2016 Apr 14.
10
N SABRE Hyperpolarization of Metronidazole at Natural Isotope Abundance.
Chemphyschem. 2021 Jul 16;22(14):1470-1477. doi: 10.1002/cphc.202100315. Epub 2021 Jun 11.

引用本文的文献

1
Toward Next-Generation Molecular Imaging with a Clinical Low-Field (0.064 T) Point-of-Care MRI Scanner.
Anal Chem. 2024 Jun 25;96(25):10348-10355. doi: 10.1021/acs.analchem.4c01299. Epub 2024 Jun 10.
2
Spin Hyperpolarization in Modern Magnetic Resonance.
Chem Rev. 2023 Feb 22;123(4):1417-1551. doi: 10.1021/acs.chemrev.2c00534. Epub 2023 Jan 26.
3
Characterization of protein-ligand interactions by SABRE.
Chem Sci. 2021 Aug 31;12(39):12950-12958. doi: 10.1039/d1sc03404a. eCollection 2021 Oct 13.
4
Synthesis and N NMR Signal Amplification by Reversible Exchange of [ N]Dalfampridine at Microtesla Magnetic Fields.
Chemphyschem. 2021 May 17;22(10):960-967. doi: 10.1002/cphc.202100109. Epub 2021 Apr 16.
5
Clinical-Scale Production of Nearly Pure (>98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy.
Anal Chem. 2021 Feb 23;93(7):3594-3601. doi: 10.1021/acs.analchem.0c05129. Epub 2021 Feb 4.
6
Multiple Quantum Coherences Hyperpolarized at Ultra-Low Fields.
Chemphyschem. 2019 Nov 5;20(21):2823-2829. doi: 10.1002/cphc.201900757. Epub 2019 Oct 17.
7
F Hyperpolarization of N-3-F-Pyridine Via Signal Amplification by Reversible Exchange.
J Phys Chem C Nanomater Interfaces. 2018 Oct 11;122(40):23002-23010. doi: 10.1021/acs.jpcc.8b06654. Epub 2018 Sep 18.
8
N Hyperpolarization of Dalfampridine at Natural Abundance for Magnetic Resonance Imaging.
Chemistry. 2019 Oct 1;25(55):12694-12697. doi: 10.1002/chem.201902724. Epub 2019 Sep 9.
9
N MRI of SLIC-SABRE Hyperpolarized N-Labelled Pyridine and Nicotinamide.
Chemistry. 2019 Jun 26;25(36):8465-8470. doi: 10.1002/chem.201900430. Epub 2019 May 27.
10
Quasi-Resonance Signal Amplification by Reversible Exchange.
J Phys Chem Lett. 2018 Oct 18;9(20):6136-6142. doi: 10.1021/acs.jpclett.8b02669. Epub 2018 Oct 10.

本文引用的文献

1
Heterogeneous Microtesla SABRE Enhancement of N NMR Signals.
Angew Chem Int Ed Engl. 2017 Aug 21;56(35):10433-10437. doi: 10.1002/anie.201705014. Epub 2017 Jul 28.
2
A Simple Route to Strong Carbon-13 NMR Signals Detectable for Several Minutes.
Chemistry. 2017 Aug 4;23(44):10496-10500. doi: 10.1002/chem.201702767. Epub 2017 Jul 19.
3
Long-Lived C Nuclear Spin States Hyperpolarized by Parahydrogen in Reversible Exchange at Microtesla Fields.
J Phys Chem Lett. 2017 Jul 6;8(13):3008-3014. doi: 10.1021/acs.jpclett.7b00987. Epub 2017 Jun 19.
4
Toward Hyperpolarized F Molecular Imaging via Reversible Exchange with Parahydrogen.
Chemphyschem. 2017 Aug 5;18(15):1961-1965. doi: 10.1002/cphc.201700594. Epub 2017 Jun 13.
5
The Absence of Quadrupolar Nuclei Facilitates Efficient C Hyperpolarization via Reversible Exchange with Parahydrogen.
Chemphyschem. 2017 Jun 20;18(12):1493-1498. doi: 10.1002/cphc.201700416. Epub 2017 May 18.
6
Dynamic H imaging of hyperpolarized [1- C]lactate in vivo using a reverse INEPT experiment.
Magn Reson Med. 2018 Feb;79(2):741-747. doi: 10.1002/mrm.26725. Epub 2017 May 5.
7
Extending the Lifetime of Hyperpolarized Propane Gas through Reversible Dissolution.
J Phys Chem C Nanomater Interfaces. 2017 Mar 2;121(8):4481-4487. doi: 10.1021/acs.jpcc.7b00509. Epub 2017 Feb 7.
8
Liquid-state carbon-13 hyperpolarization generated in an MRI system for fast imaging.
Nat Commun. 2017 Mar 6;8:14535. doi: 10.1038/ncomms14535.
9
NMR Hyperpolarization Techniques of Gases.
Chemistry. 2017 Jan 18;23(4):725-751. doi: 10.1002/chem.201603884. Epub 2016 Dec 5.
10
N Hyperpolarization of Imidazole-N for Magnetic Resonance pH Sensing via SABRE-SHEATH.
ACS Sens. 2016 Jun 24;1(6):640-644. doi: 10.1021/acssensors.6b00231. Epub 2016 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验