Suppr超能文献

氮化硼中的非磁性量子发射器具有极窄的无边带发射光谱。

Nonmagnetic Quantum Emitters in Boron Nitride with Ultranarrow and Sideband-Free Emission Spectra.

机构信息

Department of Physics & Engineering Physics, Stevens Institute of Technology , Castle Point on Hudson, Hoboken, New Jersey 07030, United States.

Department Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.

出版信息

ACS Nano. 2017 Jul 25;11(7):6652-6660. doi: 10.1021/acsnano.7b00638. Epub 2017 May 23.

Abstract

Hexagonal boron nitride (hBN) is an emerging material in nanophotonics and an attractive host for color centers for quantum photonic devices. Here, we show that optical emission from individual quantum emitters in hBN is spatially correlated with structural defects and can display ultranarrow zero-phonon line width down to 45 μeV if spectral diffusion is effectively eliminated by proper surface passivation. We demonstrate that undesired emission into phonon sidebands is largely absent for this type of emitter. In addition, magneto-optical characterization reveals cycling optical transitions with an upper bound for the g-factor of 0.2 ± 0.2. Spin-polarized density functional theory calculations predict possible commensurate transitions between like-spin electron states, which are in excellent agreement with the experimental nonmagnetic defect center emission. Our results constitute a step toward the realization of narrowband quantum light sources and the development of spin-photon interfaces within 2D materials for future chip-scale quantum networks.

摘要

六方氮化硼(hBN)是纳米光子学中一种新兴的材料,也是量子光子器件中色心的理想宿主。在这里,我们表明,hBN 中单个量子发射器的光学发射与结构缺陷具有空间相关性,如果通过适当的表面钝化有效地消除光谱扩散,则可以显示出窄至 45 μeV 的零声子线宽。我们证明,对于这种类型的发射器,不存在进入声子边带的不希望的发射。此外,磁光特性表明,循环光学跃迁的 g 因子上限为 0.2 ± 0.2。自旋极化的密度泛函理论计算预测了类似自旋电子态之间可能的同位相跃迁,这与实验中非磁性缺陷中心发射非常吻合。我们的结果朝着实现窄带量子光源以及在二维材料中开发用于未来片上量子网络的自旋光子接口迈出了一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验