Suppr超能文献

利用天然化合物调节植入生物材料的炎症反应。

Modulation of Inflammatory Response to Implanted Biomaterials Using Natural Compounds.

机构信息

Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States.

Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States.

出版信息

Curr Pharm Des. 2017;23(41):6347-6357. doi: 10.2174/1381612823666170510124348.

Abstract

Tissue engineering offers a promising strategy to restore injuries resulting from trauma, infection, tumor resection, or other diseases. In spite of significant progress, the field faces a significant bottleneck; the critical need to understand and exploit the interdependencies of tissue healing, angiogenesis, and inflammation. Inherently, the balance of these interacting processes is affected by a number of injury site conditions that represent a departure from physiological environment, including reduced pH, increased concentration of free radicals, hypoglycemia, and hypoxia. Efforts to harness the potential of immune response as a therapeutic strategy to promote tissue repair have led to identification of natural compounds with significant anti-inflammatory properties. This article provides a concise review of the body's inflammatory response to biomaterials and describes the role of oxygen as a physiological cue in this process. We proceed to highlight the potential of natural compounds to mediate inflammatory response and improve host-graft integration. Herein, we discuss the use of natural compounds to map signaling molecules and checkpoints that regulate the cross-linkage of immune response and skeletal repair.

摘要

组织工程提供了一种有前途的策略来修复创伤、感染、肿瘤切除或其他疾病引起的损伤。尽管取得了重大进展,但该领域仍面临着一个重大的瓶颈;迫切需要了解和利用组织愈合、血管生成和炎症之间的相互依存关系。这些相互作用过程的平衡受到许多损伤部位条件的影响,这些条件偏离了生理环境,包括 pH 值降低、自由基浓度增加、低血糖和缺氧。利用免疫反应作为促进组织修复的治疗策略的努力导致了具有显著抗炎特性的天然化合物的鉴定。本文简要回顾了机体对生物材料的炎症反应,并描述了氧作为这一过程中生理信号的作用。我们接着强调了天然化合物在调节免疫反应和宿主移植物整合方面的潜在作用。在这里,我们讨论了使用天然化合物来绘制调节免疫反应和骨骼修复交联的信号分子和检查点的图谱。

相似文献

1
Modulation of Inflammatory Response to Implanted Biomaterials Using Natural Compounds.
Curr Pharm Des. 2017;23(41):6347-6357. doi: 10.2174/1381612823666170510124348.
2
Advancement of Nanobiomaterials to Deliver Natural Compounds for Tissue Engineering Applications.
Int J Mol Sci. 2020 Sep 15;21(18):6752. doi: 10.3390/ijms21186752.
3
Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms.
Adv Drug Deliv Rev. 2018 Apr;129:95-117. doi: 10.1016/j.addr.2018.03.012. Epub 2018 Apr 5.
4
Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside.
Acta Biomater. 2020 Feb;103:24-51. doi: 10.1016/j.actbio.2019.11.050. Epub 2019 Dec 2.
5
Naturally derived biomaterials for addressing inflammation in tissue regeneration.
Exp Biol Med (Maywood). 2016 May;241(10):1015-24. doi: 10.1177/1535370216648022. Epub 2016 May 4.
6
Immunoengineering Biomaterials for Musculoskeletal Tissue Repair across Lifespan.
Adv Mater. 2024 Jul;36(28):e2311646. doi: 10.1002/adma.202311646. Epub 2024 May 7.
7
Drug delivery strategies to control macrophages for tissue repair and regeneration.
Exp Biol Med (Maywood). 2016 May;241(10):1054-63. doi: 10.1177/1535370216649444. Epub 2016 May 6.
8
Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design.
Exp Biol Med (Maywood). 2016 May;241(10):1084-97. doi: 10.1177/1535370216650293.
9
Biomaterials strategies to balance inflammation and tenogenesis for tendon repair.
Acta Biomater. 2021 Aug;130:1-16. doi: 10.1016/j.actbio.2021.05.043. Epub 2021 May 31.
10
Engineering of Immune Microenvironment for Enhanced Tissue Remodeling.
Tissue Eng Regen Med. 2022 Apr;19(2):221-236. doi: 10.1007/s13770-021-00419-z. Epub 2022 Jan 18.

引用本文的文献

1
Advancing Soft Tissue Reconstruction with a Ready-to-Use Human Adipose Allograft.
Bioengineering (Basel). 2025 Jun 4;12(6):612. doi: 10.3390/bioengineering12060612.
2
Engineering the Immune Response to Biomaterials.
Adv Sci (Weinh). 2025 May;12(19):e2414724. doi: 10.1002/advs.202414724. Epub 2025 Apr 15.
3
Optimization of PETG 3D printing parameters for the design and development of biocompatible bone implants.
Front Bioeng Biotechnol. 2025 Mar 27;13:1549191. doi: 10.3389/fbioe.2025.1549191. eCollection 2025.
4
Biopolymeric Scaffolds with Melatonin for Tissue Engineering-A Review.
Int J Mol Sci. 2025 Mar 11;26(6):2520. doi: 10.3390/ijms26062520.
5
Insights into the schizophrenia and dental care: focusing on interaction between implant treatments and oxidative stress.
Front Dent Med. 2025 Feb 28;6:1542913. doi: 10.3389/fdmed.2025.1542913. eCollection 2025.
6
Soyasaponin Bb/Gelatin-Methacryloyl Hydrogel for Cartilage Inflammation Inhibition.
ACS Omega. 2024 Dec 4;9(50):49597-49608. doi: 10.1021/acsomega.4c07489. eCollection 2024 Dec 17.
7
Evaluation of the immune response of peripheral blood mononuclear cells cultured on Ti6Al4V-ELI polished or etched surfaces.
Front Bioeng Biotechnol. 2024 Oct 8;12:1458091. doi: 10.3389/fbioe.2024.1458091. eCollection 2024.
9
Modelling of macrophage responses to biomaterials : state-of-the-art and the need for the improvement.
Front Immunol. 2024 Mar 26;15:1349461. doi: 10.3389/fimmu.2024.1349461. eCollection 2024.
10
Modified polymeric biomaterials with antimicrobial and immunomodulating properties.
Sci Rep. 2024 Apr 5;14(1):8025. doi: 10.1038/s41598-024-58730-3.

本文引用的文献

1
Omega-3 polyunsaturated fatty acids suppress the inflammatory responses of lipopolysaccharide-stimulated mouse microglia by activating SIRT1 pathways.
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 May;1862(5):552-560. doi: 10.1016/j.bbalip.2017.02.010. Epub 2017 Feb 22.
2
Oxygen Use in Neonatal Care: A Two-edged Sword.
Front Pediatr. 2017 Jan 9;4:143. doi: 10.3389/fped.2016.00143. eCollection 2016.
3
Secretory leukoprotease inhibitor is required for efficient quercetin-mediated suppression of TNFα secretion.
Oncotarget. 2016 Nov 15;7(46):75800-75809. doi: 10.18632/oncotarget.12415.
6
Hydroxylation-independent HIF-1α stabilization through PKA: A new paradigm for hypoxia signaling.
Sci Signal. 2016 May 31;9(430):fs11. doi: 10.1126/scisignal.aaf4630.
7
Modulation of Inflammatory Response and Induction of Bone Formation Based on Combinatorial Effects of Resveratrol.
J Nanomed Nanotechnol. 2016 Feb;7(1). doi: 10.4172/2157-7439.1000350. Epub 2016 Jan 25.
8
Quercetin, Inflammation and Immunity.
Nutrients. 2016 Mar 15;8(3):167. doi: 10.3390/nu8030167.
9
Development of an antioxidant biomaterial by promoting the deglycosylation of rutin to isoquercetin and quercetin.
Food Chem. 2016 Aug 1;204:420-426. doi: 10.1016/j.foodchem.2016.02.130. Epub 2016 Feb 23.
10
Hypoxia induces macrophage polarization and re-education toward an M2 phenotype in U87 and U251 glioblastoma models.
Oncoimmunology. 2015 Jun 5;5(1):e1056442. doi: 10.1080/2162402X.2015.1056442. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验