Yao Xuan, Wang Xing, Hu Xinde, Liu Zhen, Liu Junlai, Zhou Haibo, Shen Xiaowen, Wei Yu, Huang Zijian, Ying Wenqin, Wang Yan, Nie Yan-Hong, Zhang Chen-Chen, Li Sanlan, Cheng Leping, Wang Qifang, Wu Yan, Huang Pengyu, Sun Qiang, Shi Linyu, Yang Hui
Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
Cell Res. 2017 Jun;27(6):801-814. doi: 10.1038/cr.2017.76. Epub 2017 May 19.
Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), microhomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and ∼800 bp of homology arms, and the targeted genome. We found no significant improvement of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblastoma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock-in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo, with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies.
通过基于同源重组(HR)、微同源性介导的末端连接(MMEJ)或非同源末端连接(NHEJ)的策略,可以实现转基因的靶向整合。更常用的HR在动物胚胎和组织中实现基因整合的效率较低,因为它仅在细胞分裂期间发生,尽管MMEJ和NHEJ在某些系统中可以提高效率。在这里,我们设计了一种基于同源性介导的末端连接(HMEJ)的策略,使用CRISPR/Cas9介导切割既包含引导RNA靶位点又包含约800 bp同源臂的转基因供体载体以及靶向基因组。我们发现,与基于HR的方法相比,基于HMEJ的方法在小鼠胚胎干细胞或神经母细胞瘤细胞系N2a中的靶向效率没有显著提高。然而,基于HMEJ的方法在HEK293T细胞、原代星形胶质细胞和神经元中产生了更高的敲入效率。更重要的是,这种方法在小鼠和猴胚胎以及体内的肝细胞和神经元中实现了转基因整合,其效率远高于基于HR、NHEJ和MMEJ的策略。因此,基于HMEJ的策略可能对多种应用有用,包括用于生成动物模型的基因编辑和靶向基因治疗。