Image Sciences Institute Department of Radiology University Medical Center Utrecht Heidelberglaan, 100 3584 CX, Utrecht, The Netherlands.
Medical Image Analysis Group Department of Biomedical Engineering Eindhoven University of Technology, PO Box 513 5600 MB, Eindhoven, The Netherlands.
Sci Rep. 2017 May 19;7(1):2163. doi: 10.1038/s41598-017-02307-w.
This study investigates the predictive ability of automatic quantitative brain MRI descriptors for the identification of infants with low cognitive and/or motor outcome at 2-3 years chronological age. MR brain images of 173 patients were acquired at 30 weeks postmenstrual age (PMA) (n = 86) and 40 weeks PMA (n = 153) between 2008 and 2013. Eight tissue volumes and measures of cortical morphology were automatically computed. A support vector machine classifier was employed to identify infants who exhibit low cognitive and/or motor outcome (<85) at 2-3 years chronological age as assessed by the Bayley scales. Based on the images acquired at 30 weeks PMA, the automatic identification resulted in an area under the receiver operation characteristic curve (AUC) of 0.78 for low cognitive outcome, and an AUC of 0.80 for low motor outcome. Identification based on the change of the descriptors between 30 and 40 weeks PMA (n = 66) resulted in an AUC of 0.80 for low cognitive outcome and an AUC of 0.85 for low motor outcome. This study provides evidence of the feasibility of identification of preterm infants at risk of cognitive and motor impairments based on descriptors automatically computed from images acquired at 30 and 40 weeks PMA.
这项研究旨在探究自动定量脑 MRI 指标对预测早产儿认知和/或运动发育迟缓的能力。研究纳入了 2008 年至 2013 年间的 173 名患儿,分别在妊娠 30 周(n=86)和 40 周(n=153)时进行 MRI 检查。研究自动计算了 8 个组织体积和皮质形态学指标,并使用支持向量机分类器对在 2-3 岁时认知和/或运动发育迟缓(低于 85 分)的患儿进行识别,评估工具为贝利婴幼儿发育量表。基于妊娠 30 周时的图像,自动识别方法对认知发育迟缓的受试者工作特征曲线下面积(AUC)为 0.78,对运动发育迟缓的 AUC 为 0.80。基于妊娠 30-40 周时的指标变化(n=66),对认知发育迟缓的 AUC 为 0.80,对运动发育迟缓的 AUC 为 0.85。本研究为基于妊娠 30 和 40 周时的 MRI 图像自动计算的指标识别可能存在认知和运动障碍的早产儿提供了证据。