Adamczyk-Chauvat Katarzyna, Delaunay Sabrina, Vannier Anne, François Caroline, Thomas Gwenaëlle, Eber Frédérique, Lodé Maryse, Gilet Marie, Huteau Virginie, Morice Jérôme, Nègre Sylvie, Falentin Cyril, Coriton Olivier, Darmency Henri, Alrustom Bachar, Jenczewski Eric, Rousseau-Gueutin Mathieu, Chèvre Anne-Marie
MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, 35653 Le Rheu cedex, France.
Genetics. 2017 Jul;206(3):1361-1372. doi: 10.1534/genetics.117.201715. Epub 2017 May 22.
The effect of gene location within a crop genome on its transfer to a weed genome remains an open question for gene flow assessment. To elucidate this question, we analyzed advanced generations of intergeneric hybrids, derived from an initial pollination of known oilseed rape varieties (, AACC, 2 = 38) by a local population of wild radish (, RrRr, 2 = 18). After five generations of recurrent pollination, 307 G5 plants with a chromosome number similar to wild radish were genotyped using 105 specific markers well distributed along the chromosomes. They revealed that 49.8% of G5 plants carried at least one genomic region. According to the frequency of markers (0-28%), four classes were defined: Class 1 (near zero frequency), with 75 markers covering ∼70% of oilseed rape genome; Class 2 (low frequency), with 20 markers located on 11 genomic regions; Class 3 (high frequency), with eight markers on three genomic regions; and Class 4 (higher frequency), with two adjacent markers detected on A10. Therefore, some regions of the oilseed rape genome are more prone than others to be introgressed into wild radish. Inheritance and growth of plant progeny revealed that genomic regions of oilseed rape could be stably introduced into wild radish and variably impact the plant fitness (plant height and seed number). Our results pinpoint that novel technologies enabling the targeted insertion of transgenes should select genomic regions that are less likely to be introgressed into the weed genome, thereby reducing gene flow.
作物基因组中基因位置对其向杂草基因组转移的影响,在基因流评估方面仍是一个悬而未决的问题。为阐明这一问题,我们分析了属间杂种的高世代群体,这些杂种源于已知油菜品种(AACC,2n = 38)与当地野生萝卜群体(RrRr,2n = 18)的初始授粉。经过五代回交授粉后,使用沿染色体均匀分布的105个特异性标记,对307株染色体数与野生萝卜相似的G5代植株进行了基因分型。结果显示,49.8%的G5代植株携带至少一个油菜基因组区域。根据标记频率(0 - 28%),定义了四类:第1类(频率接近零),有75个标记覆盖了约70%的油菜基因组;第2类(低频),有20个标记位于11个基因组区域;第3类(高频),有8个标记位于3个基因组区域;第4类(更高频率),在A10染色体上检测到两个相邻标记。因此,油菜基因组的某些区域比其他区域更易渗入野生萝卜基因组。植物后代的遗传和生长情况表明,油菜的基因组区域能够稳定地导入野生萝卜,并对植物适应性(株高和种子数量)产生不同影响。我们的结果表明,能够实现转基因靶向插入的新技术应选择那些不太可能渗入杂草基因组的基因组区域,从而减少基因流。