Department of Neurology, University of Washington, Seattle, WA, 98195, USA.
Neurochem Res. 2017 Sep;42(9):2625-2638. doi: 10.1007/s11064-017-2307-8. Epub 2017 May 25.
Microglia, the resident immune cells of the CNS, are primary regulators of the neuroimmune response to injury. Type I interferons (IFNs), including the IFNαs and IFNβ, are key cytokines in the innate immune system. Their activity is implicated in the regulation of microglial function both during development and in response to neuroinflammation, ischemia, and neurodegeneration. Data from numerous studies in multiple sclerosis (MS) and stroke suggest that type I IFNs can modulate the microglial phenotype, influence the overall neuroimmune milieu, regulate phagocytosis, and affect blood-brain barrier integrity. All of these IFN-induced effects result in numerous downstream consequences on white matter pathology and microglial reactivity. Dysregulation of IFN signaling in mouse models with genetic deficiency in ubiquitin specific protease 18 (USP18) leads to a severe neurological phenotype and neuropathological changes that include white matter microgliosis and pro-inflammatory gene expression in dystrophic microglia. A class of genetic disorders in humans, referred to as pseudo-TORCH syndrome (PTS) for the clinical resemblance to infection-induced TORCH syndrome, also show dysregulation of IFN signaling, which leads to severe neurological developmental disease. In these disorders, the excessive activation of IFN signaling during CNS development results in a destructive interferonopathy with similar induction of microglial dysfunction as seen in USP18 deficient mice. Other recent studies implicate "microgliopathies" more broadly in neurological disorders including Alzheimer's disease (AD) and MS, suggesting that microglia are a potential therapeutic target for disease prevention and/or treatment, with interferon signaling playing a key role in regulating the microglial phenotype.
小胶质细胞是中枢神经系统的固有免疫细胞,是损伤后神经免疫反应的主要调节者。I 型干扰素(IFN),包括 IFNα 和 IFNβ,是先天免疫系统中的关键细胞因子。它们的活性与小胶质细胞功能的调节有关,无论是在发育过程中还是在神经炎症、缺血和神经退行性变时。来自多发性硬化症(MS)和中风的大量研究数据表明,I 型 IFNs 可以调节小胶质细胞表型,影响整体神经免疫环境,调节吞噬作用,并影响血脑屏障完整性。所有这些 IFN 诱导的效应都会对白质病理学和小胶质细胞反应产生许多下游影响。在 USP18 基因缺失的小鼠模型中,IFN 信号的失调导致严重的神经表型和神经病理学变化,包括白质小胶质细胞增生和营养不良小胶质细胞中促炎基因的表达。人类中的一类遗传疾病,由于与感染诱导的 TORCH 综合征的临床相似性而被称为伪 TORCH 综合征(PTS),也表现出 IFN 信号的失调,这导致严重的神经发育疾病。在这些疾病中,CNS 发育过程中 IFN 信号的过度激活导致具有破坏性的干扰素病,与 USP18 缺乏小鼠中所见的小胶质细胞功能障碍类似诱导。其他最近的研究更广泛地将“小胶质细胞病”与包括阿尔茨海默病(AD)和 MS 在内的神经紊乱联系起来,这表明小胶质细胞是疾病预防和/或治疗的潜在治疗靶点,干扰素信号在调节小胶质细胞表型方面发挥着关键作用。