Suppr超能文献

具有朗缪尔动力学的双向排除流确定性数学模型。

A deterministic mathematical model for bidirectional excluded flow with Langmuir kinetics.

作者信息

Zarai Yoram, Margaliot Michael, Tuller Tamir

机构信息

Dept. of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel.

School of Electrical Engineering and the Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel.

出版信息

PLoS One. 2017 Aug 23;12(8):e0182178. doi: 10.1371/journal.pone.0182178. eCollection 2017.

Abstract

In many important cellular processes, including mRNA translation, gene transcription, phosphotransfer, and intracellular transport, biological "particles" move along some kind of "tracks". The motion of these particles can be modeled as a one-dimensional movement along an ordered sequence of sites. The biological particles (e.g., ribosomes or RNAPs) have volume and cannot surpass one another. In some cases, there is a preferred direction of movement along the track, but in general the movement may be bidirectional, and furthermore the particles may attach or detach from various regions along the tracks. We derive a new deterministic mathematical model for such transport phenomena that may be interpreted as a dynamic mean-field approximation of an important model from mechanical statistics called the asymmetric simple exclusion process (ASEP) with Langmuir kinetics. Using tools from the theory of monotone dynamical systems and contraction theory we show that the model admits a unique steady-state, and that every solution converges to this steady-state. Furthermore, we show that the model entrains (or phase locks) to periodic excitations in any of its forward, backward, attachment, or detachment rates. We demonstrate an application of this phenomenological transport model for analyzing ribosome drop off in mRNA translation.

摘要

在许多重要的细胞过程中,包括mRNA翻译、基因转录、磷酸转移和细胞内运输,生物“粒子”沿着某种“轨道”移动。这些粒子的运动可以被建模为沿着有序位点序列的一维运动。生物粒子(如核糖体或RNA聚合酶)具有体积且不能相互超越。在某些情况下,沿着轨道存在优先的运动方向,但一般来说运动可能是双向的,而且粒子可能会沿着轨道的不同区域附着或脱离。我们推导了一个用于此类运输现象的新的确定性数学模型,该模型可以被解释为一个来自力学统计的重要模型的动态平均场近似,这个模型称为具有朗缪尔动力学的非对称简单排斥过程(ASEP)。使用单调动力系统理论和收缩理论的工具,我们表明该模型存在唯一的稳态,并且每个解都收敛到这个稳态。此外,我们表明该模型在其任何向前、向后、附着或脱离速率中都会被周期性激励所牵引(或锁相)。我们展示了这个唯象运输模型在分析mRNA翻译中的核糖体脱落方面的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f70a/5568237/4f4f62a9d06a/pone.0182178.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验