Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK.
Angew Chem Int Ed Engl. 2017 Aug 14;56(34):10170-10173. doi: 10.1002/anie.201703489. Epub 2017 May 23.
Hydrogen as an energy carrier promises a sustainable energy revolution. However, one of the greatest challenges for any future hydrogen economy is the necessity for large scale hydrogen production not involving concurrent CO production. The high intrinsic hydrogen content of liquid-range alkane hydrocarbons (including diesel) offers a potential route to CO -free hydrogen production through their catalytic deep dehydrogenation. We report here a means of rapidly liberating high-purity hydrogen by microwave-promoted catalytic dehydrogenation of liquid alkanes using Fe and Ni particles supported on silicon carbide. A H production selectivity from all evolved gases of some 98 %, is achieved with less than a fraction of a percent of adventitious CO and CO . The major co-product is solid, elemental carbon.
氢气作为一种能源载体有望带来可持续的能源革命。然而,未来氢能经济面临的最大挑战之一是需要大规模生产不伴随 CO 生成的氢气。液态烷烃烃(包括柴油)的高固有氢含量为通过其催化深度脱氢来生产无 CO 的氢气提供了一条潜在途径。我们在此报告了一种使用碳化硅负载的铁和镍颗粒通过微波促进的催化脱氢来快速释放液态烷烃中高纯度氢气的方法。从所有逸出气体中获得的 H 2 选择性约为 98%,而副产物 CO 和 CO 的含量不到千分之一。主要的副产物是固体元素碳。