Suppr超能文献

多光子直接激光写入和用于细胞定植的聚合物独立式结构的 3D 成像。

Multiphoton Direct Laser Writing and 3D Imaging of Polymeric Freestanding Architectures for Cell Colonization.

机构信息

LAAS-CNRS, Université de Toulouse, CNRS, F-31400, Toulouse, France.

ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, 31024, UPS, France.

出版信息

Small. 2017 Jul;13(27). doi: 10.1002/smll.201700621. Epub 2017 May 30.

Abstract

The realization of 3D architectures for the study of cell growth, proliferation, and differentiation is a task of fundamental importance for both technological and biological communities involved in the development of biomimetic cell culture environments. Here we report the fabrication of 3D freestanding scaffolds, realized by multiphoton direct laser writing and seeded with neuroblastoma cells, and their multitechnique characterization using advanced 3D fluorescence imaging approaches. The high accuracy of the fabrication process (≈200 nm) allows a much finer control of the micro- and nanoscale features compared to other 3D printing technologies based on fused deposition modeling, inkjet printing, selective laser sintering, or polyjet technology. Scanning electron microscopy (SEM) provides detailed insights about the morphology of both cells and cellular interconnections around the 3D architecture. On the other hand, the nature of the seeding in the inner core of the 3D scaffold, inaccessible by conventional SEM imaging, is unveiled by light sheet fluorescence microscopy and multiphoton confocal imaging highlighting an optimal cell colonization both around and within the 3D scaffold as well as the formation of long neuritic extensions. The results open appealing scenarios for the use of the developed 3D fabrication/3D imaging protocols in several neuroscientific contexts.

摘要

实现用于研究细胞生长、增殖和分化的 3D 架构对于涉及仿生细胞培养环境开发的技术和生物学两个领域都具有重要意义。在这里,我们报告了通过多光子直接激光写入制造的 3D 独立支架的制造,并使用先进的 3D 荧光成像方法对其进行了多技术表征。与基于熔丝制造、喷墨打印、选择性激光烧结或 PolyJet 技术的其他 3D 打印技术相比,制造过程的高精度(≈200nm)允许对微纳尺度特征进行更精细的控制。扫描电子显微镜(SEM)提供了有关细胞形态和 3D 结构周围细胞连接的详细信息。另一方面,通过光片荧光显微镜和多光子共聚焦成像揭示了 3D 支架内部核心处的种子的性质,这是传统 SEM 成像无法到达的,突出了在 3D 支架周围和内部的最佳细胞定植以及长神经突延伸的形成。这些结果为在多个神经科学领域中使用开发的 3D 制造/3D 成像方案提供了有吸引力的方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验