Tokinaga Hiroki, Xie Shang-Ping, Mukougawa Hitoshi
The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan;
Disaster Prevention Research Institute, Kyoto University, Uji 611-0011, Japan.
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6227-6232. doi: 10.1073/pnas.1615880114. Epub 2017 May 30.
With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.
随着气候加速变暖以及海冰损失创历史纪录,北极成为全球变暖的“煤矿中的金丝雀”。人们对北极历史上的变暖情况了解甚少,这限制了我们对模型预测的信心。具体而言,20世纪初北极地表气温迅速上升,尽管温室气体强迫作用比近几十年弱得多,但其升温速率却与之相当。在此,我们表明太平洋和大西洋年代际变率模式的同步相位转变是20世纪初北极迅速变暖的主要驱动因素。当恰当地规定海面温度(SST)的年代际变率时,大气模型模拟成功再现了早期北极变暖。20世纪初的北极变暖与热带和北大西洋的正SST异常以及一种让人联想到太平洋年代际振荡正相位的太平洋SST模式有关。大气环流变化对20世纪初的北极变暖很重要。赤道太平洋变暖加深了阿留申低压,将暖空气平流输送到北美北极地区。温带北大西洋和北太平洋的SST变暖加强了欧亚大陆北部的地表西风,加剧了那里的变暖。海气耦合模拟支持了太平洋和大西洋年代际模式从负相位到正相位的同步转变对北极变暖的建设性强化作用。我们的结果有助于确定北极历史变暖的原因,从而限制对这一重要地区预计的加速变暖。