Suppr超能文献

在经典型惠普尔病患者中,外周T细胞对来自惠普尔嗜组织菌的热休克蛋白70及其辅因子GrpE的反应性降低。

Peripheral T-Cell Reactivity to Heat Shock Protein 70 and Its Cofactor GrpE from Tropheryma whipplei Is Reduced in Patients with Classical Whipple's Disease.

作者信息

Trotta Lucia, Weigt Kathleen, Schinnerling Katina, Geelhaar-Karsch Anika, Oelkers Gerrit, Biagi Federico, Corazza Gino Roberto, Allers Kristina, Schneider Thomas, Erben Ulrike, Moos Verena

机构信息

First Department of Internal Medicine, University of Pavia, IRCCS Policlinico San Matteo, Pavia, Italy.

Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, CBF, Berlin, Germany.

出版信息

Infect Immun. 2017 Jul 19;85(8). doi: 10.1128/IAI.00363-17. Print 2017 Aug.

Abstract

Classical Whipple's disease (CWD) is characterized by the lack of specific Th1 response toward in genetically predisposed individuals. The cofactor GrpE of heat shock protein 70 (Hsp70) from was previously identified as a B-cell antigen. We tested the capacity of Hsp70 and GrpE to elicit specific proinflammatory T-cell responses. Peripheral mononuclear cells from CWD patients and healthy donors were stimulated with lysate or recombinant GrpE or Hsp70 before levels of CD40L, CD69, perforin, granzyme B, CD107a, and gamma interferon (IFN-γ) were determined in T cells by flow cytometry. Upon stimulation with total bacterial lysate or recombinant GrpE or Hsp70 of , the proportions of activated effector CD4 T cells, determined as CD40L IFN-γ, were significantly lower in patients with CWD than in healthy controls; CD8 T cells of untreated CWD patients revealed an enhanced activation toward unspecific stimulation and -specific degranulation, although CD69 IFN-γ CD8 T cells were reduced upon stimulation with lysate and recombinant -derived proteins. Hsp70 and its cofactor GrpE are immunogenic in healthy individuals, eliciting effective responses against to control bacterial spreading. The lack of specific T-cell responses against these -derived proteins may contribute to the pathogenesis of CWD.

摘要

经典型惠普尔病(CWD)的特征是在遗传易感个体中缺乏针对[具体病原体名称未给出]的特异性Th1反应。先前已确定来自[具体细菌名称未给出]的热休克蛋白70(Hsp70)的辅因子GrpE为B细胞抗原。我们测试了Hsp70和GrpE引发特异性促炎T细胞反应的能力。在用[具体细菌名称未给出]裂解物或重组GrpE或Hsp70刺激来自CWD患者和健康供体的外周血单个核细胞后,通过流式细胞术测定T细胞中CD40L、CD69、穿孔素、颗粒酶B、CD107a和γ干扰素(IFN-γ)的水平。在用[具体细菌名称未给出]的总细菌裂解物或重组GrpE或Hsp70刺激后,以CD40L IFN-γ确定的活化效应CD4 T细胞比例在CWD患者中显著低于健康对照;未经治疗的CWD患者的CD8 T细胞对非特异性刺激和[具体细菌名称未给出]特异性脱颗粒表现出增强的活化,尽管在用[具体细菌名称未给出]裂解物和重组[具体细菌名称未给出]衍生蛋白刺激后,CD69 IFN-γ CD8 T细胞减少。Hsp70及其辅因子GrpE在健康个体中具有免疫原性,引发针对[具体细菌名称未给出]的有效反应以控制细菌传播。针对这些[具体细菌名称未给出]衍生蛋白缺乏特异性T细胞反应可能有助于CWD的发病机制。

相似文献

2
3
Role of dendritic cells in the pathogenesis of Whipple's disease.
Infect Immun. 2015 Feb;83(2):482-91. doi: 10.1128/IAI.02463-14. Epub 2014 Nov 10.
4
Regulatory T cells in patients with Whipple's disease.
J Immunol. 2011 Oct 15;187(8):4061-7. doi: 10.4049/jimmunol.1101349. Epub 2011 Sep 14.
5
Impaired immune functions of monocytes and macrophages in Whipple's disease.
Gastroenterology. 2010 Jan;138(1):210-20. doi: 10.1053/j.gastro.2009.07.066. Epub 2009 Aug 5.
6
Immunopathology of immune reconstitution inflammatory syndrome in Whipple's disease.
J Immunol. 2013 Mar 1;190(5):2354-61. doi: 10.4049/jimmunol.1202171. Epub 2013 Jan 30.
7
Specific and nonspecific B-cell function in the small intestines of patients with Whipple's disease.
Infect Immun. 2010 Nov;78(11):4589-92. doi: 10.1128/IAI.00705-10. Epub 2010 Aug 9.
8
GrpE, A Heat-Shock Stress Responsive Chaperone, Promotes Th1-Biased T Cell Immune Response via TLR4-Mediated Activation of Dendritic Cells.
Front Cell Infect Microbiol. 2018 Mar 27;8:95. doi: 10.3389/fcimb.2018.00095. eCollection 2018.
9
Changing paradigms in Whipple's disease and infection with Tropheryma whipplei.
Eur J Clin Microbiol Infect Dis. 2011 Oct;30(10):1151-8. doi: 10.1007/s10096-011-1209-y. Epub 2011 Apr 2.

引用本文的文献

1
Human galectin-1 and galectin-3 promote infection.
Gut Microbes. 2021 Jan-Dec;13(1):1-15. doi: 10.1080/19490976.2021.1884515.
2
Epidemiology of Whipple's Disease in the USA Between 2012 and 2017: A Population-Based National Study.
Dig Dis Sci. 2019 May;64(5):1305-1311. doi: 10.1007/s10620-018-5393-9. Epub 2018 Nov 28.

本文引用的文献

1
Architectural and functional alterations of the small intestinal mucosa in classical Whipple's disease.
Mucosal Immunol. 2017 Nov;10(6):1542-1552. doi: 10.1038/mi.2017.6. Epub 2017 Feb 8.
2
Role of dendritic cells in the pathogenesis of Whipple's disease.
Infect Immun. 2015 Feb;83(2):482-91. doi: 10.1128/IAI.02463-14. Epub 2014 Nov 10.
3
B-cell epitopes of antigenic proteins in Leishmania infantum: an in silico analysis.
Parasite Immunol. 2014 Jul;36(7):313-23. doi: 10.1111/pim.12111.
5
Differential proteomics of Helicobacter pylori associated with autoimmune atrophic gastritis.
Mol Med. 2014 Feb 28;20(1):57-71. doi: 10.2119/molmed.2013.00076.
7
Looking for Tropheryma whipplei source and reservoir in rural Senegal.
Am J Trop Med Hyg. 2013 Feb;88(2):339-43. doi: 10.4269/ajtmh.2012.12-0614. Epub 2012 Dec 18.
8
Cytokine genetic profile in Whipple's disease.
Eur J Clin Microbiol Infect Dis. 2012 Nov;31(11):3145-50. doi: 10.1007/s10096-012-1677-8. Epub 2012 Jul 31.
9
Regulatory T cells in patients with Whipple's disease.
J Immunol. 2011 Oct 15;187(8):4061-7. doi: 10.4049/jimmunol.1101349. Epub 2011 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验