Suppr超能文献

肺炎病因的贝叶斯估计:流行病学考量及其在儿童健康研究肺炎病因研究中的应用

Bayesian Estimation of Pneumonia Etiology: Epidemiologic Considerations and Applications to the Pneumonia Etiology Research for Child Health Study.

作者信息

Deloria Knoll Maria, Fu Wei, Shi Qiyuan, Prosperi Christine, Wu Zhenke, Hammitt Laura L, Feikin Daniel R, Baggett Henry C, Howie Stephen R C, Scott J Anthony G, Murdoch David R, Madhi Shabir A, Thea Donald M, Brooks W Abdullah, Kotloff Karen L, Li Mengying, Park Daniel E, Lin Wenyi, Levine Orin S, O'Brien Katherine L, Zeger Scott L

机构信息

Department of International Health, International Vaccine Access Center.

Department of Rheumatology, Johns Hopkins School of Medicine, and.

出版信息

Clin Infect Dis. 2017 Jun 15;64(suppl_3):S213-S227. doi: 10.1093/cid/cix144.

Abstract

In pneumonia, specimens are rarely obtained directly from the infection site, the lung, so the pathogen causing infection is determined indirectly from multiple tests on peripheral clinical specimens, which may have imperfect and uncertain sensitivity and specificity, so inference about the cause is complex. Analytic approaches have included expert review of case-only results, case-control logistic regression, latent class analysis, and attributable fraction, but each has serious limitations and none naturally integrate multiple test results. The Pneumonia Etiology Research for Child Health (PERCH) study required an analytic solution appropriate for a case-control design that could incorporate evidence from multiple specimens from cases and controls and that accounted for measurement error. We describe a Bayesian integrated approach we developed that combined and extended elements of attributable fraction and latent class analyses to meet some of these challenges and illustrate the advantage it confers regarding the challenges identified for other methods.

摘要

在肺炎中,标本很少直接从感染部位(即肺部)获取,因此导致感染的病原体是通过对外周临床标本进行多项检测间接确定的,而这些检测的敏感性和特异性可能并不理想且存在不确定性,所以对病因的推断很复杂。分析方法包括对仅病例结果的专家审查、病例对照逻辑回归、潜在类别分析和归因分数,但每种方法都有严重局限性,且没有一种能自然地整合多项检测结果。儿童健康肺炎病因研究(PERCH)需要一种适用于病例对照设计的分析解决方案,该方案能够纳入来自病例和对照的多个标本的证据,并考虑测量误差。我们描述了一种我们开发的贝叶斯综合方法,该方法结合并扩展了归因分数和潜在类别分析的要素,以应对其中一些挑战,并说明了它在应对其他方法所面临挑战方面的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74c2/5447849/09206d341bda/cix14401.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验