Suppr超能文献

应对横断面儿科肺炎病因数据的分析挑战。

Addressing the Analytic Challenges of Cross-Sectional Pediatric Pneumonia Etiology Data.

作者信息

Hammitt Laura L, Feikin Daniel R, Scott J Anthony G, Zeger Scott L, Murdoch David R, O'Brien Katherine L, Deloria Knoll Maria

机构信息

Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.

Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi.

出版信息

Clin Infect Dis. 2017 Jun 15;64(suppl_3):S197-S204. doi: 10.1093/cid/cix147.

Abstract

Despite tremendous advances in diagnostic laboratory technology, identifying the pathogen(s) causing pneumonia remains challenging because the infected lung tissue cannot usually be sampled for testing. Consequently, to obtain information about pneumonia etiology, clinicians and researchers test specimens distant to the site of infection. These tests may lack sensitivity (eg, blood culture, which is only positive in a small proportion of children with pneumonia) and/or specificity (eg, detection of pathogens in upper respiratory tract specimens, which may indicate asymptomatic carriage or a less severe syndrome, such as upper respiratory infection). While highly sensitive nucleic acid detection methods and testing of multiple specimens improve sensitivity, multiple pathogens are often detected and this adds complexity to the interpretation as the etiologic significance of results may be unclear (ie, the pneumonia may be caused by none, one, some, or all of the pathogens detected). Some of these challenges can be addressed by adjusting positivity rates to account for poor sensitivity or incorporating test results from controls without pneumonia to account for poor specificity. However, no classical analytic methods can account for measurement error (ie, sensitivity and specificity) for multiple specimen types and integrate the results of measurements for multiple pathogens to produce an accurate understanding of etiology. We describe the major analytic challenges in determining pneumonia etiology and review how the common analytical approaches (eg, descriptive, case-control, attributable fraction, latent class analysis) address some but not all challenges. We demonstrate how these limitations necessitate a new, integrated analytical approach to pneumonia etiology data.

摘要

尽管诊断实验室技术取得了巨大进展,但由于通常无法采集感染的肺组织进行检测,因此确定引起肺炎的病原体仍然具有挑战性。因此,为了获取有关肺炎病因的信息,临床医生和研究人员会对远离感染部位的标本进行检测。这些检测可能缺乏敏感性(例如,血培养仅在一小部分肺炎儿童中呈阳性)和/或特异性(例如,在上呼吸道标本中检测病原体,这可能表明无症状携带或症状较轻的综合征,如上呼吸道感染)。虽然高灵敏度核酸检测方法和对多个标本进行检测可提高敏感性,但通常会检测到多种病原体,这增加了解释的复杂性,因为结果的病因学意义可能不明确(即肺炎可能由检测到的病原体中的无、一种、几种或全部引起)。通过调整阳性率以考虑敏感性差或纳入无肺炎对照的检测结果以考虑特异性差,可以解决其中一些挑战。然而,没有经典的分析方法能够考虑多种标本类型的测量误差(即敏感性和特异性),并整合多种病原体的测量结果以准确了解病因。我们描述了确定肺炎病因的主要分析挑战,并回顾了常见的分析方法(例如,描述性、病例对照、归因分数、潜在类别分析)如何解决部分而非全部挑战。我们展示了这些局限性如何需要一种新的、综合的肺炎病因数据分析方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdc0/5447845/ce54ccf548b1/cix14701.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验