Koulaouzidis Anastasios, Iakovidis Dimitris K, Yung Diana E, Rondonotti Emanuele, Kopylov Uri, Plevris John N, Toth Ervin, Eliakim Abraham, Wurm Johansson Gabrielle, Marlicz Wojciech, Mavrogenis Georgios, Nemeth Artur, Thorlacius Henrik, Tontini Gian Eugenio
Centre for Liver and Digestive Disorders, The Royal Infirmary of Edinburgh, Edinburgh, UK.
University of Thessaly, Department of Computer Science and Biomedical Informatics, Volos, Thessaly, Greece.
Endosc Int Open. 2017 Jun;5(6):E477-E483. doi: 10.1055/s-0043-105488. Epub 2017 May 31.
Capsule endoscopy (CE) has revolutionized small-bowel (SB) investigation. Computational methods can enhance diagnostic yield (DY); however, incorporating machine learning algorithms (MLAs) into CE reading is difficult as large amounts of image annotations are required for training. Current databases lack graphic annotations of pathologies and cannot be used. A novel database, KID, aims to provide a reference for research and development of medical decision support systems (MDSS) for CE.
Open-source software was used for the KID database. Clinicians contribute anonymized, annotated CE images and videos. Graphic annotations are supported by an open-access annotation tool (Ratsnake). We detail an experiment based on the KID database, examining differences in SB lesion measurement between human readers and a MLA. The Jaccard Index (JI) was used to evaluate similarity between annotations by the MLA and human readers.
The MLA performed best in measuring lymphangiectasias with a JI of 81 ± 6 %. The other lesion types were: angioectasias (JI 64 ± 11 %), aphthae (JI 64 ± 8 %), chylous cysts (JI 70 ± 14 %), polypoid lesions (JI 75 ± 21 %), and ulcers (JI 56 ± 9 %).
MLA can perform as well as human readers in the measurement of SB angioectasias in white light (WL). Automated lesion measurement is therefore feasible. KID is currently the only open-source CE database developed specifically to aid development of MDSS. Our experiment demonstrates this potential.
胶囊内镜检查(CE)彻底改变了小肠(SB)检查方式。计算方法可提高诊断率(DY);然而,将机器学习算法(MLA)纳入CE阅片存在困难,因为训练需要大量图像标注。当前数据库缺乏病变的图形标注,无法使用。一个新的数据库KID旨在为CE医学决策支持系统(MDSS)的研发提供参考。
KID数据库使用开源软件。临床医生提供匿名的、带标注的CE图像和视频。图形标注由一个开放获取的标注工具(Ratsnake)支持。我们详细介绍了一项基于KID数据库的实验,研究人类阅片者和MLA在SB病变测量上的差异。使用Jaccard指数(JI)评估MLA和人类阅片者标注之间的相似度。
MLA在测量淋巴管扩张方面表现最佳,JI为81±6%。其他病变类型为:血管扩张(JI 64±11%)、阿弗他溃疡(JI 64±8%)、乳糜囊肿(JI 70±14%)、息肉样病变(JI 75±21%)和溃疡(JI 56±9%)。
在白光(WL)下测量SB血管扩张时,MLA的表现与人类阅片者相当。因此,自动病变测量是可行的。KID是目前唯一专门为辅助MDSS开发而建立的开源CE数据库。我们的实验证明了这一潜力。