Ma Xiaoye, Lian Qinshu, Chu Haitao, Ibrahim Joseph G, Chen Yong
Division of Biostatistics, School of Public Health, University of Minnesota, 420 Delaware St, Minneapolis, MN 55455, USA
Department of Biostatistic, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC 27599, USA.
Biostatistics. 2018 Jan 1;19(1):87-102. doi: 10.1093/biostatistics/kxx025.
To compare the accuracy of multiple diagnostic tests in a single study, three designs are commonly used (i) the multiple test comparison design; (ii) the randomized design, and (iii) the non-comparative design. Existing meta-analysis methods of diagnostic tests (MA-DT) have been focused on evaluating the performance of a single test by comparing it with a reference test. The increasing number of available diagnostic instruments for a disease condition and the different study designs being used have generated the need to develop efficient and flexible meta-analysis framework to combine all designs for simultaneous inference. In this article, we develop a missing data framework and a Bayesian hierarchical model for network MA-DT (NMA-DT) and offer important promises over traditional MA-DT: (i) It combines studies using all three designs; (ii) It pools both studies with or without a gold standard; (iii) it combines studies with different sets of candidate tests; and (iv) it accounts for heterogeneity across studies and complex correlation structure among multiple tests. We illustrate our method through a case study: network meta-analysis of deep vein thrombosis tests.
为了在一项研究中比较多种诊断测试的准确性,通常使用三种设计:(i)多重测试比较设计;(ii)随机设计;以及(iii)非比较设计。现有的诊断测试荟萃分析方法(MA-DT)一直专注于通过将单一测试与参考测试进行比较来评估其性能。针对某一疾病状况的可用诊断仪器数量不断增加,以及所使用的不同研究设计,使得有必要开发高效且灵活的荟萃分析框架,以结合所有设计进行同时推断。在本文中,我们为网络MA-DT(NMA-DT)开发了一个缺失数据框架和一个贝叶斯层次模型,并相对于传统MA-DT有重要优势:(i)它结合了使用所有三种设计的研究;(ii)它汇总了有或没有金标准的研究;(iii)它结合了具有不同候选测试集的研究;以及(iv)它考虑了研究间的异质性和多种测试之间的复杂相关结构。我们通过一个案例研究来说明我们的方法:深静脉血栓形成测试的网络荟萃分析。