Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
Sci Rep. 2016 Aug 24;6:32135. doi: 10.1038/srep32135.
In this study, in a bio-hybrid microswimmer system driven by multiple Serratia marcescens bacteria, we quantify the chemotactic drift of a large number of microswimmers towards L-serine and elucidate the associated collective chemotaxis behavior by statistical analysis of over a thousand swimming trajectories of the microswimmers. The results show that the microswimmers have a strong heading preference for moving up the L-serine gradient, while their speed does not change considerably when moving up and down the gradient; therefore, the heading bias constitutes the major factor that produces the chemotactic drift. The heading direction of a microswimmer is found to be significantly more persistent when it moves up the L-serine gradient than when it travels down the gradient; this effect causes the apparent heading preference of the microswimmers and is the crucial reason that enables the seemingly cooperative chemotaxis of multiple bacteria on a microswimmer. In addition, we find that their chemotactic drift velocity increases superquadratically with their mean swimming speed, suggesting that chemotaxis of bio-hybrid microsystems can be enhanced by designing and building faster microswimmers. Such bio-hybrid microswimmers with chemotactic steering capability may find future applications in targeted drug delivery, bioengineering, and lab-on-a-chip devices.
在这项研究中,我们在一个由多个粘质沙雷氏菌驱动的生物混合微型游泳者系统中,量化了大量微型游泳者向 L-丝氨酸的趋化漂移,并通过对一千多个微型游泳者的游泳轨迹进行统计分析,阐明了相关的集体趋化行为。结果表明,微型游泳者在向上的 L-丝氨酸梯度中具有强烈的游动偏置,而在上下梯度中其速度变化不大;因此,游动偏置是产生趋化漂移的主要因素。当微型游泳者向上移动 L-丝氨酸梯度时,其游动方向比向下移动时更持久;这种效应导致了微型游泳者明显的游动偏置,是多个细菌在微型游泳者上似乎合作趋化的关键原因。此外,我们发现它们的趋化漂移速度与平均游动速度呈超二次方关系增加,这表明通过设计和制造更快的微型游泳者可以增强生物混合微系统的趋化作用。具有趋化转向能力的这种生物混合微型游泳者可能在靶向药物输送、生物工程和片上实验室设备中有未来的应用。