Chouirfa Hamza, Evans Margaret D M, Castner David G, Bean Penny, Mercier Dimitri, Galtayries Anouk, Falentin-Daudré Céline, Migonney Véronique
LBPS/CSPBAT, UMR CNRS 7244, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue JB Clément, 93340 Villetaneuse, France.
CSIRO Biomedical Materials Manufacturing Program, 11 Julius Avenue, North Ryde, Sydney, NSW 2113, Australia.
Biointerphases. 2017 Jun 14;12(2):02C418. doi: 10.1116/1.4985608.
This contribution reports on grafting of bioactive polymers such as poly(sodium styrene sulfonate) (polyNaSS) onto titanium (Ti) surfaces. This grafting process uses a modified dopamine as an anchor molecule to link polyNaSS to the Ti surface. The grafting process combines reversible addition-fragmentation chain transfer polymerization, postpolymerization modification, and thiol-ene chemistry. The first step in the process is to synthetize architecture controlled polyNaSS with a thiol end group. The second step is the adhesion of the dopamine acrylamide (DA) anchor onto the Ti surfaces. The last step is grafting polyNaSS to the DA-modified Ti surfaces. The modified dopamine anchor group with its bioadhesive properties is essential to link bioactive polymers to the Ti surface. The polymers are characterized by conventional methods (nuclear magnetic resonance, size exclusion chromatography, and attenuated total reflection-Fourier-transformed infrared), and the grafting is characterized by x-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and quartz crystal microbalance with dissipation monitoring. To illustrate the biocompatibility of the grafted Ti-DA-polyNaSS surfaces, their interactions with proteins (albumin and fibronectin) and cells are investigated. Both albumin and fibronectin are readily adsorbed onto Ti-DA-polyNaSS surfaces. The biocompatibility of modified Ti-DA-polyNaSS and control ungrafted Ti surfaces is tested using human bone cells (Saos-2) in cell culture for cell adhesion, proliferation, differentiation, and mineralization. This study presents a new, simple way to graft bioactive polymers onto Ti surfaces using a catechol intermediary with the aim of demonstrating the biocompatibility of these size controlled polyNaSS grafted surfaces.
本论文报道了将生物活性聚合物,如聚(苯乙烯磺酸钠)(聚NaSS)接枝到钛(Ti)表面的研究。该接枝过程使用改性多巴胺作为锚定分子,将聚NaSS连接到Ti表面。接枝过程结合了可逆加成-断裂链转移聚合、后聚合改性和硫醇-烯化学。该过程的第一步是合成具有硫醇端基的结构可控的聚NaSS。第二步是多巴胺丙烯酰胺(DA)锚定物在Ti表面的粘附。最后一步是将聚NaSS接枝到DA改性的Ti表面。具有生物粘附特性的改性多巴胺锚定基团对于将生物活性聚合物连接到Ti表面至关重要。聚合物通过常规方法(核磁共振、尺寸排阻色谱和衰减全反射-傅里叶变换红外光谱)进行表征,接枝情况通过X射线光电子能谱、飞行时间二次离子质谱和带耗散监测的石英晶体微天平进行表征。为了说明接枝的Ti-DA-聚NaSS表面的生物相容性,研究了它们与蛋白质(白蛋白和纤连蛋白)以及细胞的相互作用。白蛋白和纤连蛋白都很容易吸附在Ti-DA-聚NaSS表面。使用人骨细胞(Saos-2)在细胞培养中测试改性Ti-DA-聚NaSS和未接枝的对照Ti表面的生物相容性,以研究细胞粘附、增殖、分化和矿化情况。本研究提出了一种使用邻苯二酚中间体将生物活性聚合物接枝到Ti表面的新的简单方法,目的是证明这些尺寸可控的聚NaSS接枝表面的生物相容性。