Lay Nathan, Tsehay Yohannes, Greer Matthew D, Turkbey Baris, Kwak Jin Tae, Choyke Peter L, Pinto Peter, Wood Bradford J, Summers Ronald M
National Institutes of Health, Clinical Center, Imaging Biomarkers and Computer Aided Diagnosis Laboratory, Bethesda, Maryland, United States.
National Institutes of Health, National Cancer Institute, Urologic Oncology Branch and Molecular Imaging Program, Bethesda, Maryland, United States.
J Med Imaging (Bellingham). 2017 Apr;4(2):024506. doi: 10.1117/1.JMI.4.2.024506. Epub 2017 Jun 12.
A prostate computer-aided diagnosis (CAD) based on random forest to detect prostate cancer using a combination of spatial, intensity, and texture features extracted from three sequences, T2W, ADC, and B2000 images, is proposed. The random forest training considers instance-level weighting for equal treatment of small and large cancerous lesions as well as small and large prostate backgrounds. Two other approaches, based on an AutoContext pipeline intended to make better use of sequence-specific patterns, were considered. One pipeline uses random forest on individual sequences while the other uses an image filter described to produce probability map-like images. These were compared to a previously published CAD approach based on support vector machine (SVM) evaluated on the same data. The random forest, features, sampling strategy, and instance-level weighting improve prostate cancer detection performance [area under the curve (AUC) 0.93] in comparison to SVM (AUC 0.86) on the same test data. Using a simple image filtering technique as a first-stage detector to highlight likely regions of prostate cancer helps with learning stability over using a learning-based approach owing to visibility and ambiguity of annotations in each sequence.
本文提出了一种基于随机森林的前列腺计算机辅助诊断(CAD)方法,该方法利用从T2W、ADC和B2000三个序列图像中提取的空间、强度和纹理特征组合来检测前列腺癌。随机森林训练考虑了实例级加权,以便平等对待大小不同的癌性病变以及大小不同的前列腺背景。还考虑了另外两种基于自动上下文管道的方法,旨在更好地利用序列特定模式。一种管道在单个序列上使用随机森林,而另一种使用所描述的图像滤波器来生成类似概率图的图像。将这些方法与之前发表的基于支持向量机(SVM)且在相同数据上评估的CAD方法进行比较。与在相同测试数据上的SVM(曲线下面积(AUC)为0.86)相比,随机森林、特征、采样策略和实例级加权提高了前列腺癌检测性能(AUC为0.93)。使用简单的图像滤波技术作为第一阶段检测器来突出可能的前列腺癌区域,由于每个序列中标注的可见性和模糊性,相比于使用基于学习的方法,有助于提高学习稳定性。