McLaughlin Kelly A, Levin Michael
Allen Discovery Center, Department of Biology, Tufts University, 200 Boston Ave., Suite 4700, Medford, MA 02155, United States.
Allen Discovery Center, Department of Biology, Tufts University, 200 Boston Ave., Suite 4700, Medford, MA 02155, United States.
Dev Biol. 2018 Jan 15;433(2):177-189. doi: 10.1016/j.ydbio.2017.08.032. Epub 2017 Dec 25.
The ability to control pattern formation is critical for the both the embryonic development of complex structures as well as for the regeneration/repair of damaged or missing tissues and organs. In addition to chemical gradients and gene regulatory networks, endogenous ion flows are key regulators of cell behavior. Not only do bioelectric cues provide information needed for the initial development of structures, they also enable the robust restoration of normal pattern after injury. In order to expand our basic understanding of morphogenetic processes responsible for the repair of complex anatomy, we need to identify the roles of endogenous voltage gradients, ion flows, and electric fields. In complement to the current focus on molecular genetics, decoding the information transduced by bioelectric cues enhances our knowledge of the dynamic control of growth and pattern formation. Recent advances in science and technology place us in an exciting time to elucidate the interplay between molecular-genetic inputs and important biophysical cues that direct the creation of tissues and organs. Moving forward, these new insights enable additional approaches to direct cell behavior and may result in profound advances in augmentation of regenerative capacity.
控制模式形成的能力对于复杂结构的胚胎发育以及受损或缺失组织和器官的再生/修复都至关重要。除了化学梯度和基因调控网络外,内源性离子流是细胞行为的关键调节因子。生物电信号不仅为结构的初始发育提供所需信息,还能在损伤后实现正常模式的强劲恢复。为了拓展我们对负责复杂解剖结构修复的形态发生过程的基本理解,我们需要确定内源性电压梯度、离子流和电场的作用。作为对当前分子遗传学重点研究的补充,解码生物电信号转导的信息可增强我们对生长和模式形成动态控制的认识。科学技术的最新进展使我们处于一个激动人心的时代,能够阐明分子遗传输入与指导组织和器官形成的重要生物物理信号之间的相互作用。展望未来,这些新见解为指导细胞行为提供了更多方法,并可能在增强再生能力方面取得深远进展。