Smith Alec S T, Yoo Hyok, Yi Hyunjung, Ahn Eun Hyun, Lee Justin H, Shao Guozheng, Nagornyak Ekaterina, Laflamme Michael A, Murry Charles E, Kim Deok-Ho
Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
Chem Commun (Camb). 2017 Jun 29;53(53):7412-7415. doi: 10.1039/c7cc01988b.
A lack of electrical conductivity and structural organization in currently available biomaterial scaffolds limits their utility for generating physiologically representative models of functional cardiac tissue. Here we report on the development of scalable, graphene-functionalized topographies with anisotropic electrical conductivity for engineering the structural and functional phenotypes of macroscopic cardiac tissue constructs. Guided by anisotropic electroconductive and topographic cues, the tissue constructs displayed structural property enhancement in myofibrils and sarcomeres, and exhibited significant increases in the expression of cell-cell coupling and calcium handling proteins, as well as in action potential duration and peak calcium release.
目前可用的生物材料支架缺乏导电性和结构组织,这限制了它们用于生成具有生理代表性的功能性心脏组织模型的效用。在此,我们报告了具有各向异性导电性的可扩展石墨烯功能化拓扑结构的开发,用于构建宏观心脏组织构建体的结构和功能表型。在各向异性导电和拓扑线索的引导下,组织构建体在肌原纤维和肌节中表现出结构性能增强,并在细胞间偶联和钙处理蛋白的表达、动作电位持续时间和钙释放峰值方面显著增加。