Tokuda Isao T, Okamoto Akihiko, Matsumura Ritsuko, Takumi Toru, Akashi Makoto
Department of Mechanical Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan.
Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan.
Mol Biol Cell. 2017 Aug 15;28(17):2333-2342. doi: 10.1091/mbc.E17-02-0129. Epub 2017 Jun 21.
Limit-cycle oscillations require the presence of nonlinear processes. Although mathematical studies have long suggested that multiple nonlinear processes are required for autonomous circadian oscillation in clock gene expression, the underlying mechanism remains controversial. Here we show experimentally that cell-autonomous circadian transcription of a mammalian clock gene requires a functionally interdependent tandem E-box motif; the lack of either of the two E-boxes results in arrhythmic transcription. Although previous studies indicated the role of the tandem motifs in increasing circadian amplitude, enhancing amplitude does not explain the mechanism for limit-cycle oscillations in transcription. In this study, mathematical analysis suggests that the interdependent behavior of enhancer elements including not only E-boxes but also ROR response elements might contribute to limit-cycle oscillations by increasing transcriptional nonlinearity. As expected, introduction of the interdependence of circadian enhancer elements into mathematical models resulted in autonomous transcriptional oscillation with low Hill coefficients. Together these findings suggest that interdependent tandem enhancer motifs on multiple clock genes might cooperatively enhance nonlinearity in the whole circadian feedback system, which would lead to limit-cycle oscillations in clock gene expression.
极限环振荡需要非线性过程的存在。尽管数学研究早就表明,时钟基因表达中的自主昼夜节律振荡需要多个非线性过程,但其潜在机制仍存在争议。在此,我们通过实验表明,哺乳动物时钟基因的细胞自主昼夜节律转录需要功能上相互依赖的串联E盒基序;两个E盒中缺少任何一个都会导致转录无节律。尽管先前的研究表明串联基序在增加昼夜节律振幅方面的作用,但增强振幅并不能解释转录中极限环振荡的机制。在本研究中,数学分析表明,不仅包括E盒而且还包括ROR反应元件的增强子元件的相互依赖行为可能通过增加转录非线性来促进极限环振荡。正如预期的那样,将昼夜节律增强子元件的相互依赖性引入数学模型会导致具有低希尔系数的自主转录振荡。这些发现共同表明,多个时钟基因上相互依赖的串联增强子基序可能协同增强整个昼夜节律反馈系统中的非线性,这将导致时钟基因表达中的极限环振荡。