School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
Sensors (Basel). 2017 Jun 23;17(7):1484. doi: 10.3390/s17071484.
The integration of supported lipid membranes with surface-based nanoplasmonic arrays provides a powerful sensing approach to investigate biointerfacial phenomena at membrane interfaces. While a growing number of lipid vesicles, protein, and nucleic acid systems have been explored with nanoplasmonic sensors, there has been only very limited investigation of the interactions between solution-phase nanomaterials and supported lipid membranes. Herein, we established a surface-based localized surface plasmon resonance (LSPR) sensing platform for probing the interaction of dielectric nanoparticles with supported lipid bilayer (SLB)-coated, plasmonic nanodisk arrays. A key emphasis was placed on controlling membrane functionality by tuning the membrane surface charge vis-à-vis lipid composition. The optical sensing properties of the bare and SLB-coated sensor surfaces were quantitatively compared, and provided an experimental approach to evaluate nanoparticle-membrane interactions across different SLB platforms. While the interaction of negatively-charged silica nanoparticles (SiNPs) with a zwitterionic SLB resulted in monotonic adsorption, a stronger interaction with a positively-charged SLB resulted in adsorption and lipid transfer from the SLB to the SiNP surface, in turn influencing the LSPR measurement responses based on the changing spatial proximity of transferred lipids relative to the sensor surface. Precoating SiNPs with bovine serum albumin (BSA) suppressed lipid transfer, resulting in monotonic adsorption onto both zwitterionic and positively-charged SLBs. Collectively, our findings contribute a quantitative understanding of how supported lipid membrane coatings influence the sensing performance of nanoplasmonic arrays, and demonstrate how the high surface sensitivity of nanoplasmonic sensors is well-suited for detecting the complex interactions between nanoparticles and lipid membranes.
将支撑脂质膜与基于表面的纳米等离子体阵列集成提供了一种强大的传感方法,可用于研究膜界面处的生物界面现象。虽然越来越多的脂质囊泡、蛋白质和核酸系统已经在纳米等离子体传感器中得到了探索,但对于溶液相纳米材料与支撑脂质膜之间的相互作用,只有非常有限的研究。在此,我们建立了一种基于表面的局部表面等离子体共振(LSPR)传感平台,用于探测介电纳米粒子与支撑双层脂质膜(SLB)涂层、等离子纳米盘阵列的相互作用。重点是通过调节膜表面电荷和脂质组成来控制膜功能。定量比较了裸传感器表面和 SLB 涂层传感器表面的光学传感特性,并提供了一种实验方法来评估不同 SLB 平台上的纳米颗粒-膜相互作用。虽然带负电荷的二氧化硅纳米粒子(SiNPs)与两性离子 SLB 的相互作用导致单调吸附,但与带正电荷的 SLB 的更强相互作用导致从 SLB 到 SiNP 表面的吸附和脂质转移,从而根据转移脂质相对于传感器表面的空间接近程度的变化影响 LSPR 测量响应。用牛血清白蛋白(BSA)预涂覆 SiNPs 抑制了脂质转移,导致在两性离子和带正电荷的 SLB 上均发生单调吸附。总的来说,我们的研究结果提供了对支撑脂质膜涂层如何影响纳米等离子体阵列传感性能的定量理解,并展示了纳米等离子体传感器的高表面灵敏度如何适合检测纳米粒子和脂质膜之间的复杂相互作用。