Suppr超能文献

二元属性选择的注意漂移扩散模型。

An attentional drift diffusion model over binary-attribute choice.

机构信息

Cornell University, Cornell SC Johnson College of Business and Dyson School of Applied Economics and Management, 340C Warren Hall, Ithaca, NY 14853, United States.

出版信息

Cognition. 2017 Nov;168:34-45. doi: 10.1016/j.cognition.2017.06.007. Epub 2017 Jun 21.

Abstract

In order to make good decisions, individuals need to identify and properly integrate information about various attributes associated with a choice. Since choices are often complex and made rapidly, they are typically affected by contextual variables that are thought to influence how much attention is paid to different attributes. I propose a modification of the attentional drift-diffusion model, the binary-attribute attentional drift diffusion model (baDDM), which describes the choice process over simple binary-attribute choices and how it is affected by fluctuations in visual attention. Using an eye-tracking experiment, I find the baDDM makes accurate quantitative predictions about several key variables including choices, reaction times, and how these variables are correlated with attention to two attributes in an accept-reject decision. Furthermore, I estimate an attribute-based fixation bias that suggests attention to an attribute increases its subjective weight by 5%, while the unattended attribute's weight is decreased by 10%.

摘要

为了做出好的决策,个体需要识别并正确整合与选择相关的各种属性的信息。由于选择通常是复杂且快速做出的,它们通常会受到情境变量的影响,这些变量被认为会影响对不同属性的关注程度。我提出了对注意漂移扩散模型的修改,即二元属性注意漂移扩散模型(baDDM),它描述了简单二元属性选择过程中的选择过程,以及视觉注意力波动如何影响选择过程。通过眼动实验,我发现 baDDM 可以对几个关键变量进行准确的定量预测,包括选择、反应时间,以及这些变量与接受/拒绝决策中对两个属性的注意力的相关性。此外,我还估计了基于属性的注视偏差,该偏差表明对一个属性的注意力会使其主观权重增加 5%,而未被注意的属性的权重则会降低 10%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验