Suppr超能文献

拜氏梭菌MCMB 581在选定表面活性剂存在下提高正丁醇产量

Enhanced n-butanol production by Clostridium beijerinckii MCMB 581 in presence of selected surfactant.

作者信息

Singh Kajal, Gedam Preety S, Raut Atulkumar N, Dhamole Pradip B, Dhakephalkar P K, Ranade Dilip R

机构信息

MACS-Agharkar Research Institute (ARI), G.G. Agharkar Road, Pune, Maharashtra, 411004, India.

Department of Chemical Engineering, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur, Maharashtra, 440010, India.

出版信息

3 Biotech. 2017 Jul;7(3):161. doi: 10.1007/s13205-017-0803-9. Epub 2017 Jun 29.

Abstract

Extractive butanol fermentation with non-ionic surfactant, a recently explored area, has shown promising results with several advantages but is relatively less investigated. This work reports the extractive fermentation with selected non-ionic surfactants (L62 and L62D) to enhance butanol production using a high-butanol producing strain (Clostridium beijerinckii MCMB 581). Biocompatibility studies with both the surfactants showed growth. Higher concentrations of surfactant (>5%) affected the cell count. 15.3 g L of butanol and 21 g L of total solvents were obtained with 3% (v/v) L62 which was respectively, 43% (w/w) and 55% (w/w), higher than control. It was found that surfactant addition at 9th h doubled the productivity (from 0.13 to 0.31 g L h and 0.17 to 0.39 g L h, respectively for butanol and total solvent). Butanol productivity obtained was 2-3 times higher than similar studies on extractive fermentation with non-ionic surfactants. Interestingly, mixing did not improve butanol production.

摘要

采用非离子表面活性剂进行萃取丁醇发酵是一个最近才探索的领域,已显示出有前景的结果,具有几个优点,但相对较少受到研究。这项工作报道了使用选定的非离子表面活性剂(L62和L62D)进行萃取发酵,以利用高产丁醇菌株(拜氏梭菌MCMB 581)提高丁醇产量。对这两种表面活性剂的生物相容性研究显示有生长现象。较高浓度的表面活性剂(>5%)影响细胞计数。使用3%(v/v)的L62获得了15.3 g/L的丁醇和21 g/L的总溶剂,分别比对照高43%(w/w)和55%(w/w)。发现第9小时添加表面活性剂使生产率提高了一倍(丁醇和总溶剂的生产率分别从0.13 g/L·h和0.17 g/L·h提高到0.31 g/L·h和0.39 g/L·h)。所获得的丁醇生产率比关于非离子表面活性剂萃取发酵的类似研究高2至3倍。有趣的是,混合并没有提高丁醇产量。

相似文献

2
Screening of non-Ionic Surfactant for Enhancing Biobutanol Production.
Appl Biochem Biotechnol. 2015 Nov;177(6):1272-81. doi: 10.1007/s12010-015-1812-y. Epub 2015 Aug 28.
9
Biobutanol production from brewer's spent grain hydrolysates by Clostridium beijerinckii.利用拜氏梭菌从啤酒糟水解物生产生物丁醇。
Bioresour Technol. 2017 Nov;244(Pt 1):166-174. doi: 10.1016/j.biortech.2017.07.139. Epub 2017 Jul 27.

本文引用的文献

2
Screening of non-Ionic Surfactant for Enhancing Biobutanol Production.
Appl Biochem Biotechnol. 2015 Nov;177(6):1272-81. doi: 10.1007/s12010-015-1812-y. Epub 2015 Aug 28.
3
Extractive microbial fermentation in cloud point system.浊点系统中的萃取微生物发酵
Enzyme Microb Technol. 2010 May 5;46(6):407-18. doi: 10.1016/j.enzmictec.2010.02.004. Epub 2010 Feb 13.
4
Extraction of p-coumaric acid and ferulic acid using surfactant-based aqueous two-phase system.
Appl Biochem Biotechnol. 2014 Sep;174(2):564-73. doi: 10.1007/s12010-014-1107-8. Epub 2014 Aug 1.
7
High yield bio-butanol production by solvent-producing bacterial microflora.溶剂产生菌微生物群落高产生物丁醇的生产。
Bioresour Technol. 2012 Jun;113:58-64. doi: 10.1016/j.biortech.2011.12.133. Epub 2012 Jan 2.
9
Whole cell microbial transformation in cloud point system.浊点体系中的全细胞微生物转化
J Ind Microbiol Biotechnol. 2008 Jul;35(7):645-56. doi: 10.1007/s10295-008-0345-6. Epub 2008 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验