Suppr超能文献

使用无处不在的材料、开源硬件和传感器构建一个机器人倾倒装置,利用计算机视觉和模式识别算法评估啤酒泡沫质量:RoboBEER。

Development of a robotic pourer constructed with ubiquitous materials, open hardware and sensors to assess beer foam quality using computer vision and pattern recognition algorithms: RoboBEER.

作者信息

Gonzalez Viejo Claudia, Fuentes Sigfredo, Li GuangJun, Collmann Richard, Condé Bruna, Torrico Damir

机构信息

University of Melbourne, Faculty of Veterinary and Agricultural Sciences, VIC 3010, Australia.

University of Melbourne, Faculty of Veterinary and Agricultural Sciences, VIC 3010, Australia.

出版信息

Food Res Int. 2016 Nov;89(Pt 1):504-513. doi: 10.1016/j.foodres.2016.08.045. Epub 2016 Sep 1.

Abstract

There are currently no standardized objective measures to assess beer quality based on the most significant parameters related to the first impression from consumers, which are visual characteristics of foamability, beer color and bubble size. This study describes the development of an affordable and robust robotic beer pourer using low-cost sensors, Arduino® boards, Lego® building blocks and servo motors for prototyping. The RoboBEER is also coupled with video capture capabilities (iPhone 5S) and automated post hoc computer vision analysis algorithms to assess different parameters based on foamability, bubble size, alcohol content, temperature, carbon dioxide release and beer color. Results have shown that parameters obtained from different beers by only using the RoboBEER can be used for their classification according to quality and fermentation type. Results were compared to sensory analysis techniques using principal component analysis (PCA) and artificial neural networks (ANN) techniques. The PCA from RoboBEER data explained 73% of variability within the data. From sensory analysis, the PCA explained 67% of the variability and combining RoboBEER and Sensory data, the PCA explained only 59% of data variability. The ANN technique for pattern recognition allowed creating a classification model from the parameters obtained with RoboBEER, achieving 92.4% accuracy in the classification according to quality and fermentation type, which is consistent with the PCA results using data only from RoboBEER. The repeatability and objectivity of beer assessment offered by the RoboBEER could translate into the development of an important practical tool for food scientists, consumers and retail companies to determine differences within beers based on the specific parameters studied.

摘要

目前还没有基于与消费者第一印象相关的最重要参数来评估啤酒质量的标准化客观方法,这些参数包括泡沫形成性、啤酒颜色和气泡大小等视觉特征。本研究描述了一种使用低成本传感器、Arduino® 开发板、乐高® 积木和伺服电机进行原型制作的经济实惠且坚固耐用的机器人啤酒倾倒装置的开发。RoboBEER 还具备视频捕捉功能(iPhone 5S)以及自动化的事后计算机视觉分析算法,可基于泡沫形成性、气泡大小、酒精含量、温度、二氧化碳释放量和啤酒颜色来评估不同参数。结果表明,仅使用 RoboBEER 从不同啤酒中获取的参数可用于根据质量和发酵类型对啤酒进行分类。将结果与使用主成分分析(PCA)和人工神经网络(ANN)技术的感官分析技术进行了比较。来自 RoboBEER 数据的主成分分析解释了数据中 73% 的变异性。从感官分析来看,主成分分析解释了 67% 的变异性,而将 RoboBEER 和感官数据相结合时,主成分分析仅解释了 59% 的数据变异性。用于模式识别的人工神经网络技术允许根据 RoboBEER 获取的参数创建分类模型,在根据质量和发酵类型进行的分类中准确率达到 92.4%,这与仅使用 RoboBEER 数据的主成分分析结果一致。RoboBEER 提供的啤酒评估的可重复性和客观性可以转化为食品科学家、消费者和零售公司的一个重要实用工具,用于根据所研究的特定参数确定啤酒之间的差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验