Zhang Jie, Wei Xiaofeng, Zeng Rui, Xu Feng, Li XiuJun
Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xian 710049, PR China.
Future Sci OA. 2017 May 8;3(2):FSO187. doi: 10.4155/fsoa-2016-0091. eCollection 2017 Jun.
Microfluidic lab-on-a-chip provides a new platform with unique advantages to mimic complex physiological microenvironments and has been increasingly exploited to stem cell research. In this review, we highlight recent advances of microfluidic devices for stem cell culture and differentiation toward the development of organ-on-a-chip, especially with an emphasis on vital innovations within the last 2 years. Various aspects for improving on-chip stem-cell culture and differentiation, particularly toward organ-on-a-chip, are discussed, along with microenvironment control, surface modification, extracellular scaffolds, high throughput and stimuli. The combination of microfluidic technologies and stem cells hold great potential toward versatile systems of 'organ-on-a-chip' as desired. Adapted with permission from [1-8].
微流控芯片实验室提供了一个具有独特优势的新平台,可用于模拟复杂的生理微环境,并且已越来越多地应用于干细胞研究。在本综述中,我们重点介绍了用于干细胞培养和分化以开发芯片器官的微流控设备的最新进展,特别是强调了过去两年内的重要创新。讨论了改善芯片上干细胞培养和分化的各个方面,特别是朝着芯片器官方向的改善,以及微环境控制、表面修饰、细胞外支架、高通量和刺激等方面。微流控技术与干细胞的结合对于实现所需的通用“芯片器官”系统具有巨大潜力。已获许可改编自[1-8]。