Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles, California, 90095, USA.
Brazilian Synchrotron Laboratory (LNLS), Brazilian Center for in Energy and Materials, CEP 13083-970, Campinas, São Paulo, Brazil.
Sci Rep. 2017 Jul 6;7(1):4757. doi: 10.1038/s41598-017-04784-5.
Precise localization of nanoparticles within a cell is crucial to the understanding of cell-particle interactions and has broad applications in nanomedicine. Here, we report a proof-of-principle experiment for imaging individual functionalized nanoparticles within a mammalian cell by correlative microscopy. Using a chemically-fixed HeLa cell labeled with fluorescent core-shell nanoparticles as a model system, we implemented a graphene-oxide layer as a substrate to significantly reduce background scattering. We identified cellular features of interest by fluorescence microscopy, followed by scanning transmission X-ray tomography to localize the particles in 3D, and ptychographic coherent diffractive imaging of the fine features in the region at high resolution. By tuning the X-ray energy to the Fe L-edge, we demonstrated sensitive detection of nanoparticles composed of a 22 nm magnetic FeO core encased by a 25-nm-thick fluorescent silica (SiO) shell. These fluorescent core-shell nanoparticles act as landmarks and offer clarity in a cellular context. Our correlative microscopy results confirmed a subset of particles to be fully internalized, and high-contrast ptychographic images showed two oxidation states of individual nanoparticles with a resolution of ~16.5 nm. The ability to precisely localize individual fluorescent nanoparticles within mammalian cells will expand our understanding of the structure/function relationships for functionalized nanoparticles.
纳米粒子在细胞内的精确定位对于理解细胞-粒子相互作用至关重要,并在纳米医学中有广泛的应用。在这里,我们报告了一个通过相关显微镜对哺乳动物细胞内单个功能化纳米粒子进行成像的原理验证实验。我们使用用荧光核壳纳米粒子标记的化学固定化 HeLa 细胞作为模型系统,实现了以氧化石墨烯层作为衬底,显著降低背景散射。我们通过荧光显微镜识别感兴趣的细胞特征,然后通过扫描透射 X 射线断层扫描在 3D 中定位粒子,并在高分辨率下对该区域的精细特征进行相衬相干衍射成像。通过调整 X 射线能量到 Fe L 边缘,我们演示了对由 22nm 磁性 FeO 核和 25nm 厚荧光 SiO 壳组成的纳米粒子的敏感检测。这些荧光核壳纳米粒子作为标记物,在细胞环境中提供了清晰度。我们的相关显微镜结果证实了一部分粒子完全被内化,高对比度相衬图像显示了单个纳米粒子的两种氧化态,分辨率约为 16.5nm。能够在哺乳动物细胞内精确定位单个荧光纳米粒子,将扩展我们对功能化纳米粒子的结构/功能关系的理解。