Center for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC, Australia.
School of Engineering, RMIT University, Melbourne, Victoria, Australia.
Sci Rep. 2017 Jul 6;7(1):4797. doi: 10.1038/s41598-017-04643-3.
Enabling control over macromolecular ordering and the spatial distribution of structures formed via the mechanisms of molecular self-assembly is a challenge that could yield a range of new functional materials. In particular, using the self-assembly of minimalist peptides, to drive the incorporation of large complex molecules will allow a functionalization strategy for the next generation of biomaterial engineering. Here, for the first time, we show that co-assembly with increasing concentrations of a highly charged polysaccharide, fucoidan, the microscale ordering of Fmoc-FRGDF peptide fibrils and subsequent mechanical properties of the resultant hydrogel can be easily and effectively manipulated without disruption to the nanofibrillar structure of the assembly.
实现对大分子有序性和通过分子自组装机制形成的结构的空间分布的控制是一项具有挑战性的工作,它可能会产生一系列新型功能材料。特别是,使用最小肽的自组装来驱动大复杂分子的掺入,将允许下一代生物材料工程的功能化策略。在这里,我们首次表明,随着浓度的增加,与带高电荷的多糖岩藻多糖共组装,会使 Fmoc-FRGDF 肽原纤维的微尺度有序性和所得水凝胶的机械性能能够在不破坏组装的纳米纤维结构的情况下,轻易且有效地进行调控。