imec, Leuven, Belgium.
KUL, Leuven, Belgium.
Sci Rep. 2017 Jul 10;7(1):5016. doi: 10.1038/s41598-017-04055-3.
Two-dimensional (2D) material based FETs are being considered for future technology nodes and high performance logic applications. However, a comprehensive assessment of 2D material based FETs has been lacking for high performance logic applications considering appropriate system level figure-of-merits (FOMs) e.g. delay, and energy-delay product. In this paper, we present guidelines for 2D material based FETs to meet sub-10 nm high performance logic requirements focusing on material requirement, device design, energy-delay optimization for the first time. We show the need for 2D materials with smaller effective mass in the transport direction and anisotropicity to meet the performance requirement for future technology nodes. We present novel device designs with one such 2D material (monolayer black-phosphorus) to keep Moore's alive for the HP logic in sub-5 nm gate length regime. With these device proposals we show that below 5 nm gate lengths 2D electrostatistics arising from gate stack design becomes more of a challenge than direct source-to-drain tunneling for 2D material-based FETs. Therefore, it is challenging to meet both delay and energy-delay requirement in sub-5 nm gate length regime without scaling both supply voltage (V ) and effective-oxide-thickness (EOT) below 0.5 V and 0.5 nm respectively.
基于二维(2D)材料的 FET 正在被考虑用于未来的技术节点和高性能逻辑应用。然而,对于高性能逻辑应用,缺乏针对适当的系统级衡量标准(如延迟和能量延迟乘积)的全面评估。在本文中,我们首次提出了基于 2D 材料的 FET 满足亚 10nm 高性能逻辑要求的指南,重点关注材料要求、器件设计和能量延迟优化。我们表明,需要具有较小有效质量和各向异性的 2D 材料来满足未来技术节点的性能要求。我们提出了具有一种这样的 2D 材料(单层黑磷)的新颖器件设计,以使摩尔定律在亚 5nm 栅长范围内适用于高性能逻辑。通过这些器件提案,我们表明,在 5nm 以下的栅长范围内,由于栅堆叠设计引起的 2D 静电学比 2D 材料 FET 的直接源漏隧穿更具挑战性。因此,如果不将电源电压 (VDD) 和有效氧化物厚度 (EOT) 分别降低到 0.5V 和 0.5nm 以下,就很难在亚 5nm 栅长范围内同时满足延迟和能量延迟要求。