Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands.
Curr Pharm Des. 2017;23(26):3845-3857. doi: 10.2174/1381612823666170710155726.
Facing the problems of limited renal regeneration capacity and the persistent shortage of donor kidneys, dialysis remains the only treatment option for many end-stage renal disease patients. Unfortunately, dialysis is only a medium-term solution because large and protein-bound uremic solutes are not efficiently cleared from the body and lead to disease progression over time. Current strategies for improved renal replacement therapies (RRTs) range from whole organ engineering to biofabrication of renal assist devices and biological injectables for in vivo regeneration. Notably, all approaches coincide with the incorporation of cellular components and biomimetic micro-environments. Concerning the latter, hydrogels form promising materials as scaffolds and cell carrier systems due to the demonstrated biocompatibility of most natural hydrogels, tunable biochemical and mechanical properties, and various application possibilities. In this review, the potential of hydrogel-based cell therapies for kidney regeneration is discussed. First, we provide an overview of current trends in the development of RRTs and in vivo regeneration options, before examining the possible roles of hydrogels within these fields. We discuss major application-specific hydrogel design criteria and, subsequently, assess the potential of emergent biofabrication technologies, such as micromolding, microfluidics and electrodeposition for the development of new RRTs and injectable stem cell therapies.
面对肾脏再生能力有限和供体肾脏持续短缺的问题,透析仍然是许多终末期肾病患者的唯一治疗选择。不幸的是,透析只是一种中期解决方案,因为大量的和蛋白结合的尿毒症溶质不能有效地从体内清除,导致疾病随时间进展。目前,改善肾脏替代疗法 (RRT) 的策略范围从整个器官工程到生物制造肾脏辅助设备和用于体内再生的生物可注射物。值得注意的是,所有方法都与细胞成分和仿生微环境的结合相一致。关于后者,水凝胶由于大多数天然水凝胶表现出的生物相容性、可调节的生化和机械性能以及各种应用可能性,形成了有前途的支架和细胞载体系统材料。在这篇综述中,讨论了基于水凝胶的细胞疗法在肾脏再生中的潜力。首先,我们提供了 RRT 发展和体内再生选择的当前趋势概述,然后研究了水凝胶在这些领域中的可能作用。我们讨论了主要的特定应用水凝胶设计标准,随后评估了新兴的生物制造技术的潜力,如微成型、微流控和电沉积在开发新的 RRT 和可注射干细胞疗法中的应用。