Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
Adv Mater. 2017 Sep;29(35). doi: 10.1002/adma.201701333. Epub 2017 Jul 14.
Conductive filaments (CFs)-based resistive random access memory possesses the ability of scaling down to sub-nanoscale with high-density integration architecture, making it the most promising nanoelectronic technology for reclaiming Moore's law. Compared with the extensive study in inorganic switching medium, the scientific challenge now is to understand the growth kinetics of nanoscale CFs in organic polymers, aiming to achieve controllable switching characteristics toward flexible and reliable nonvolatile organic memory. Here, this paper systematically investigates the resistive switching (RS) behaviors based on a widely adopted vertical architecture of Al/organic/indium-tin-oxide (ITO), with poly(9-vinylcarbazole) as the case study. A nanoscale Al filament with a dynamic-gap zone (DGZ) is directly observed using in situ scanning transmission electron microscopy (STEM) , which demonstrates that the RS behaviors are related to the random formation of spliced filaments consisting of Al and oxygen vacancy dual conductive channels growing through carbazole groups. The randomicity of the filament formation can be depressed by introducing a cone-shaped contact via a one-step integration method. The conical electrode can effectively shorten the DGZ and enhance the localized electric field, thus reducing the switching voltage and improving the RS uniformity. This study provides a deeper insight of the multiple filamentary mechanisms for organic RS effect.
基于导电丝(CFs)的电阻式随机存取存储器具有缩小至亚纳米级的能力,具有高密度集成架构,是最有前途的回收摩尔定律的纳米电子技术。与无机开关介质的广泛研究相比,目前的科学挑战是理解有机聚合物中纳米级 CFs 的生长动力学,旨在实现对灵活可靠的非易失性有机存储器的可控开关特性。本文系统地研究了基于广泛采用的 Al/有机/铟锡氧化物(ITO)垂直结构的电阻开关(RS)行为,以聚(9-乙烯基咔唑)为例。使用原位扫描透射电子显微镜(STEM)直接观察到具有动态间隙区(DGZ)的纳米级 Al 细丝,证明 RS 行为与由 Al 和氧空位双导电通道组成的拼接细丝的随机形成有关,这些通道通过咔唑基团生长。通过一步集成方法引入锥形接触,可以抑制细丝形成的随机性。锥形电极可以有效地缩短 DGZ 并增强局部电场,从而降低开关电压并提高 RS 均匀性。本研究为有机 RS 效应的多重细丝机制提供了更深入的了解。