Suppr超能文献

验证预后模型时对治疗使用情况的考量:一项模拟研究。

Accounting for treatment use when validating a prognostic model: a simulation study.

作者信息

Pajouheshnia Romin, Peelen Linda M, Moons Karel G M, Reitsma Johannes B, Groenwold Rolf H H

机构信息

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands.

Cochrane Netherlands, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

BMC Med Res Methodol. 2017 Jul 14;17(1):103. doi: 10.1186/s12874-017-0375-8.

Abstract

BACKGROUND

Prognostic models often show poor performance when applied to independent validation data sets. We illustrate how treatment use in a validation set can affect measures of model performance and present the uses and limitations of available analytical methods to account for this using simulated data.

METHODS

We outline how the use of risk-lowering treatments in a validation set can lead to an apparent overestimation of risk by a prognostic model that was developed in a treatment-naïve cohort to make predictions of risk without treatment. Potential methods to correct for the effects of treatment use when testing or validating a prognostic model are discussed from a theoretical perspective.. Subsequently, we assess, in simulated data sets, the impact of excluding treated individuals and the use of inverse probability weighting (IPW) on the estimated model discrimination (c-index) and calibration (observed:expected ratio and calibration plots) in scenarios with different patterns and effects of treatment use.

RESULTS

Ignoring the use of effective treatments in a validation data set leads to poorer model discrimination and calibration than would be observed in the untreated target population for the model. Excluding treated individuals provided correct estimates of model performance only when treatment was randomly allocated, although this reduced the precision of the estimates. IPW followed by exclusion of the treated individuals provided correct estimates of model performance in data sets where treatment use was either random or moderately associated with an individual's risk when the assumptions of IPW were met, but yielded incorrect estimates in the presence of non-positivity or an unobserved confounder.

CONCLUSIONS

When validating a prognostic model developed to make predictions of risk without treatment, treatment use in the validation set can bias estimates of the performance of the model in future targeted individuals, and should not be ignored. When treatment use is random, treated individuals can be excluded from the analysis. When treatment use is non-random, IPW followed by the exclusion of treated individuals is recommended, however, this method is sensitive to violations of its assumptions.

摘要

背景

预后模型应用于独立验证数据集时,其性能往往不佳。我们阐述了验证集中治疗的使用如何影响模型性能的衡量指标,并使用模拟数据展示了可用分析方法在考虑这一因素时的用途及局限性。

方法

我们概述了验证集中降低风险治疗的使用如何导致一个在未经治疗队列中开发的、用于预测未治疗风险的预后模型明显高估风险。从理论角度讨论了在测试或验证预后模型时校正治疗使用影响的潜在方法。随后,我们在模拟数据集中评估了在不同治疗使用模式和效果的情景下,排除接受治疗个体以及使用逆概率加权(IPW)对估计的模型区分度(c指数)和校准(观察值:期望值比率及校准图)的影响。

结果

在验证数据集中忽略有效治疗的使用会导致模型区分度和校准比在模型的未治疗目标人群中观察到的更差。仅当治疗是随机分配时,排除接受治疗个体能提供模型性能的正确估计,尽管这降低了估计的精度。当满足IPW的假设时,IPW随后排除接受治疗个体在治疗使用为随机或与个体风险适度相关的数据集中能提供模型性能的正确估计,但在存在非阳性或未观察到的混杂因素时会产生错误估计。

结论

在验证一个用于预测未治疗风险的预后模型时,验证集中治疗的使用可能会使模型在未来目标个体中的性能估计产生偏差,不应被忽视。当治疗使用是随机的时,可以将接受治疗个体排除在分析之外。当治疗使用是非随机的时,建议采用IPW随后排除接受治疗个体的方法,然而,该方法对其假设的违背很敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ba/5513339/60595317431c/12874_2017_375_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验