Groenwold Rolf H H, Moons Karel G M, Pajouheshnia Romin, Altman Doug G, Collins Gary S, Debray Thomas P A, Reitsma Johannes B, Riley Richard D, Peelen Linda M
Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands.
Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands; Dutch Cochrane Center, University Medical Center Utrecht, PO Box 85500, Utrecht, 3508 GA, The Netherlands.
J Clin Epidemiol. 2016 Oct;78:90-100. doi: 10.1016/j.jclinepi.2016.03.017. Epub 2016 Apr 1.
To compare different methods to handle treatment when developing a prognostic model that aims to produce accurate probabilities of the outcome of individuals if left untreated.
Simulations were performed based on two normally distributed predictors, a binary outcome, and a binary treatment, mimicking a randomized trial or an observational study. Comparison was made between simply ignoring treatment (SIT), restricting the analytical data set to untreated individuals (AUT), inverse probability weighting (IPW), and explicit modeling of treatment (MT). Methods were compared in terms of predictive performance of the model and the proportion of incorrect treatment decisions.
Omitting a genuine predictor of the outcome from the prognostic model decreased model performance, in both an observational study and a randomized trial. In randomized trials, the proportion of incorrect treatment decisions was smaller when applying AUT or MT, compared to SIT and IPW. In observational studies, MT was superior to all other methods regarding the proportion of incorrect treatment decisions.
If a prognostic model aims to produce correct probabilities of the outcome in the absence of treatment, ignoring treatments that affect that outcome can lead to suboptimal model performance and incorrect treatment decisions. Explicitly, modeling treatment is recommended.
在开发一种预后模型时,比较不同的方法来处理治疗情况,该模型旨在得出个体若不接受治疗时结果的准确概率。
基于两个正态分布的预测变量、一个二元结局和一个二元治疗进行模拟,模拟随机试验或观察性研究。比较了简单忽略治疗(SIT)、将分析数据集限制为未接受治疗的个体(AUT)、逆概率加权(IPW)以及明确对治疗进行建模(MT)这几种方法。从模型的预测性能和错误治疗决策的比例方面对这些方法进行了比较。
在观察性研究和随机试验中,从预后模型中省略真正的结局预测变量都会降低模型性能。在随机试验中,与SIT和IPW相比,应用AUT或MT时错误治疗决策的比例更小。在观察性研究中,就错误治疗决策的比例而言,MT优于所有其他方法。
如果一个预后模型旨在得出未接受治疗时结果的正确概率,忽略影响该结果的治疗可能会导致模型性能欠佳和错误的治疗决策。具体而言,建议明确对治疗进行建模。