Clarkson J D, Fina I, Liu Z Q, Lee Y, Kim J, Frontera C, Cordero K, Wisotzki S, Sanchez F, Sort J, Hsu S L, Ko C, Aballe L, Foerster M, Wu J, Christen H M, Heron J T, Schlom D G, Salahuddin S, Kioussis N, Fontcuberta J, Marti X, Ramesh R
Department of Materials Science and Engineering, University of California, Berkeley, California, 94720, USA.
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
Sci Rep. 2017 Nov 13;7(1):15460. doi: 10.1038/s41598-017-13760-y.
The ability to control a magnetic phase with an electric field is of great current interest for a variety of low power electronics in which the magnetic state is used either for information storage or logic operations. Over the past several years, there has been a considerable amount of research on pathways to control the direction of magnetization with an electric field. More recently, an alternative pathway involving the change of the magnetic state (ferromagnet to antiferromagnet) has been proposed. In this paper, we demonstrate electric field control of the Anomalous Hall Transport in a metamagnetic FeRh thin film, accompanying an antiferromagnet (AFM) to ferromagnet (FM) phase transition. This approach provides us with a pathway to "hide" or "reveal" a given ferromagnetic region at zero magnetic field. By converting the AFM phase into the FM phase, the stray field, and hence sensitivity to external fields, is decreased or eliminated. Using detailed structural analyses of FeRh films of varying crystalline quality and chemical order, we relate the direct nanoscale origins of this memory effect to site disorder as well as variations of the net magnetic anisotropy of FM nuclei. Our work opens pathways toward a new generation of antiferromagnetic - ferromagnetic interactions for spintronics.
利用电场控制磁相的能力目前在各种低功耗电子学领域备受关注,在这些领域中,磁态被用于信息存储或逻辑运算。在过去几年里,人们对利用电场控制磁化方向的途径进行了大量研究。最近,有人提出了一种涉及磁态变化(从铁磁体到反铁磁体)的替代途径。在本文中,我们展示了在变磁FeRh薄膜中反常霍尔输运的电场控制,同时伴随着反铁磁体(AFM)到铁磁体(FM)的相变。这种方法为我们提供了一条在零磁场下“隐藏”或“揭示”给定铁磁区域的途径。通过将AFM相转变为FM相,杂散场以及对外场的敏感度会降低或消除。通过对不同晶体质量和化学有序度的FeRh薄膜进行详细的结构分析,我们将这种记忆效应的直接纳米尺度起源与位点无序以及FM核的净磁各向异性变化联系起来。我们的工作为自旋电子学中新一代反铁磁 - 铁磁相互作用开辟了道路。