Riedl Anna, Gieger Christian, Hauner Hans, Daniel Hannelore, Linseisen Jakob
1Helmholtz Zentrum München,German Research Center for Environmental Health (GmbH),Institute of Epidemiology II,Ingolstädter Landstr. 1,85764 Neuherberg,Germany.
4Else Kröner-Fresenius Centre for Nutritional Medicine,Technical University Munich,Gregor-Mendel-Str. 2,85354 Freising-Weihenstephan,Germany.
Br J Nutr. 2017 Jun;117(12):1631-1644. doi: 10.1017/S0007114517001611. Epub 2017 Jul 19.
Metabolic diversity leads to differences in nutrient requirements and responses to diet and medication between individuals. Using the concept of metabotyping - that is, grouping metabolically similar individuals - tailored and more efficient recommendations may be achieved. The aim of this study was to review the current literature on metabotyping and to explore its potential for better targeted dietary intervention in subjects with and without metabolic diseases. A comprehensive literature search was performed in PubMed, Google and Google Scholar to find relevant articles on metabotyping in humans including healthy individuals, population-based samples and patients with chronic metabolic diseases. A total of thirty-four research articles on human studies were identified, which established more homogeneous subgroups of individuals using statistical methods for analysing metabolic data. Differences between studies were found with respect to the samples/populations studied, the clustering variables used, the statistical methods applied and the metabotypes defined. According to the number and type of the selected clustering variables, the definitions of metabotypes differed substantially; they ranged between general fasting metabotypes, more specific fasting parameter subgroups like plasma lipoprotein or fatty acid clusters and response groups to defined meal challenges or dietary interventions. This demonstrates that the term 'metabotype' has a subjective usage, calling for a formalised definition. In conclusion, this literature review shows that metabotyping can help identify subgroups of individuals responding differently to defined nutritional interventions. Targeted recommendations may be given at such metabotype group levels. Future studies should develop and validate definitions of generally valid metabotypes by exploiting the increasingly available metabolomics data sets.
代谢多样性导致个体之间在营养需求以及对饮食和药物的反应方面存在差异。利用代谢分型的概念,即对代谢相似的个体进行分组,可以实现更具针对性和更高效率的建议。本研究的目的是回顾当前关于代谢分型的文献,并探讨其在有或没有代谢疾病的受试者中进行更精准饮食干预的潜力。在PubMed、谷歌和谷歌学术上进行了全面的文献检索,以查找有关人类代谢分型的相关文章,包括健康个体、基于人群的样本以及患有慢性代谢疾病的患者。总共确定了34篇关于人类研究的文章,这些文章使用统计方法分析代谢数据,建立了更同质的个体亚组。研究发现,在所研究的样本/人群、使用的聚类变量、应用的统计方法以及定义的代谢型方面存在差异。根据所选聚类变量的数量和类型,代谢型的定义有很大不同;范围从一般的空腹代谢型、更具体的空腹参数亚组(如血浆脂蛋白或脂肪酸簇)到对特定膳食挑战或饮食干预的反应组。这表明“代谢型”一词的使用具有主观性,需要一个正式的定义。总之,这篇文献综述表明,代谢分型有助于识别对特定营养干预反应不同的个体亚组。可以在这样的代谢型组水平上给出针对性的建议。未来的研究应该通过利用越来越多可用的代谢组学数据集,开发并验证普遍有效的代谢型定义。