Suppr超能文献

微重力环境下的纳米孔测序

Nanopore sequencing in microgravity.

作者信息

McIntyre Alexa B R, Rizzardi Lindsay, Yu Angela M, Alexander Noah, Rosen Gail L, Botkin Douglas J, Stahl Sarah E, John Kristen K, Castro-Wallace Sarah L, McGrath Ken, Burton Aaron S, Feinberg Andrew P, Mason Christopher E

机构信息

Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA.

Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.

出版信息

NPJ Microgravity. 2016 Oct 20;2:16035. doi: 10.1038/npjmgrav.2016.35. eCollection 2016.

Abstract

Rapid DNA sequencing and analysis has been a long-sought goal in remote research and point-of-care medicine. In microgravity, DNA sequencing can facilitate novel astrobiological research and close monitoring of crew health, but spaceflight places stringent restrictions on the mass and volume of instruments, crew operation time, and instrument functionality. The recent emergence of portable, nanopore-based tools with streamlined sample preparation protocols finally enables DNA sequencing on missions in microgravity. As a first step toward sequencing in space and aboard the International Space Station (ISS), we tested the Oxford Nanopore Technologies MinION during a parabolic flight to understand the effects of variable gravity on the instrument and data. In a successful proof-of-principle experiment, we found that the instrument generated DNA reads over the course of the flight, including the first ever sequenced in microgravity, and additional reads measured after the flight concluded its parabolas. Here we detail modifications to the sample-loading procedures to facilitate nanopore sequencing aboard the ISS and in other microgravity environments. We also evaluate existing analysis methods and outline two new approaches, the first based on a wave-fingerprint method and the second on entropy signal mapping. Computationally light analysis methods offer the potential for species identification, but are limited by the error profiles (stays, skips, and mismatches) of older nanopore data. Higher accuracies attainable with modified sample processing methods and the latest version of flow cells will further enable the use of nanopore sequencers for diagnostics and research in space.

摘要

快速DNA测序与分析一直是远程研究和即时医疗领域长期追求的目标。在微重力环境下,DNA测序有助于开展新的天体生物学研究并密切监测宇航员健康状况,但太空飞行对仪器的质量和体积、宇航员操作时间以及仪器功能都有严格限制。近期出现的基于纳米孔的便携式工具以及简化的样本制备方案,终于使在微重力任务中进行DNA测序成为可能。作为在太空和国际空间站(ISS)上进行测序的第一步,我们在抛物线飞行过程中测试了牛津纳米孔技术公司的MinION,以了解可变重力对仪器和数据的影响。在一次成功的原理验证实验中,我们发现该仪器在飞行过程中生成了DNA读数,包括首次在微重力环境下测序得到的读数,以及飞行抛物线结束后测得的额外读数。在此,我们详细介绍了对样本加载程序的改进,以便于在国际空间站和其他微重力环境中进行纳米孔测序。我们还评估了现有的分析方法,并概述了两种新方法,第一种基于波指纹法,第二种基于熵信号映射。计算量小的分析方法具有物种识别的潜力,但受旧纳米孔数据的错误特征(滞留、跳跃和错配)限制。改进的样本处理方法和最新版本的流动槽可实现更高的准确性,这将进一步推动纳米孔测序仪在太空诊断和研究中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f79d/5515536/aaccd1c44e2f/npjmgrav201635-f1.jpg

相似文献

1
Nanopore sequencing in microgravity.
NPJ Microgravity. 2016 Oct 20;2:16035. doi: 10.1038/npjmgrav.2016.35. eCollection 2016.
2
Nanopore sequencing at Mars, Europa, and microgravity conditions.
NPJ Microgravity. 2020 Sep 7;6:24. doi: 10.1038/s41526-020-00113-9. eCollection 2020.
4
Off Earth Identification of Bacterial Populations Using 16S rDNA Nanopore Sequencing.
Genes (Basel). 2020 Jan 9;11(1):76. doi: 10.3390/genes11010076.
5
Genome assembly using Nanopore-guided long and error-free DNA reads.
BMC Genomics. 2015 Apr 20;16(1):327. doi: 10.1186/s12864-015-1519-z.
6
Aseptic technique in microgravity.
Surg Gynecol Obstet. 1992 Nov;175(5):466-76.
8
Rapid multiplex MinION nanopore sequencing workflow for Influenza A viruses.
BMC Infect Dis. 2020 Sep 3;20(1):648. doi: 10.1186/s12879-020-05367-y.
9
High precision genome sequencing of engineered Gluconobacter oxydans 621H by combining long nanopore and short accurate Illumina reads.
J Biotechnol. 2017 Sep 20;258:197-205. doi: 10.1016/j.jbiotec.2017.04.016. Epub 2017 Apr 19.

引用本文的文献

1
Custom barcoded primers for influenza A nanopore sequencing: enhanced performance with reduced preparation time.
Front Cell Infect Microbiol. 2025 Apr 15;15:1545032. doi: 10.3389/fcimb.2025.1545032. eCollection 2025.
2
Beyond Earth's bounds: navigating the frontiers of Assisted Reproductive Technologies (ART) in space.
Reprod Biol Endocrinol. 2024 Oct 11;22(1):123. doi: 10.1186/s12958-024-01290-y.
6
Telomeres and aging: on and off the planet!
Biogerontology. 2024 Apr;25(2):313-327. doi: 10.1007/s10522-024-10098-7. Epub 2024 Apr 6.
7
Efficient real-time selective genome sequencing on resource-constrained devices.
Gigascience. 2022 Dec 28;12. doi: 10.1093/gigascience/giad046. Epub 2023 Jul 3.
9
Application of third-generation sequencing to herbal genomics.
Front Plant Sci. 2023 Mar 7;14:1124536. doi: 10.3389/fpls.2023.1124536. eCollection 2023.
10
Portable nanopore-sequencing technology: Trends in development and applications.
Front Microbiol. 2023 Feb 1;14:1043967. doi: 10.3389/fmicb.2023.1043967. eCollection 2023.

本文引用的文献

1
Highly parallel direct RNA sequencing on an array of nanopores.
Nat Methods. 2018 Mar;15(3):201-206. doi: 10.1038/nmeth.4577. Epub 2018 Jan 15.
2
Evaluation of techniques for performing cellular isolation and preservation during microgravity conditions.
NPJ Microgravity. 2016 Jul 14;2:16025. doi: 10.1038/npjmgrav.2016.25. eCollection 2016.
3
INC-Seq: accurate single molecule reads using nanopore sequencing.
Gigascience. 2016 Aug 2;5(1):34. doi: 10.1186/s13742-016-0140-7.
4
Real-time digital pathogen surveillance - the time is now.
Genome Biol. 2015 Jul 30;16(1):155. doi: 10.1186/s13059-015-0726-x.
5
Fast and sensitive mapping of nanopore sequencing reads with GraphMap.
Nat Commun. 2016 Apr 15;7:11307. doi: 10.1038/ncomms11307.
6
Denoising DNA deep sequencing data-high-throughput sequencing errors and their correction.
Brief Bioinform. 2016 Jan;17(1):154-79. doi: 10.1093/bib/bbv029. Epub 2015 May 29.
7
Successful test launch for nanopore sequencing.
Nat Methods. 2015 Apr;12(4):303-4. doi: 10.1038/nmeth.3327.
8
Improved data analysis for the MinION nanopore sequencer.
Nat Methods. 2015 Apr;12(4):351-6. doi: 10.1038/nmeth.3290. Epub 2015 Feb 16.
9
A first look at the Oxford Nanopore MinION sequencer.
Mol Ecol Resour. 2014 Nov;14(6):1097-102. doi: 10.1111/1755-0998.12324. Epub 2014 Sep 24.
10
The pivotal regulatory landscape of RNA modifications.
Annu Rev Genomics Hum Genet. 2014;15:127-50. doi: 10.1146/annurev-genom-090413-025405. Epub 2014 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验