Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, China.
Curr Biol. 2017 Aug 7;27(15):2296-2306.e3. doi: 10.1016/j.cub.2017.06.044. Epub 2017 Jul 20.
The motility and signaling functions of the primary cilium require a unique protein and lipid composition that is determined by gating mechanisms localized at the base of the cilium. Several protein complexes localize to the gating zone and may regulate ciliary protein composition; however, the mechanisms of ciliary gating and the dynamics of the gating components are largely unknown. Here, we used the BiFC (bimolecular fluorescence complementation) assay and report for the first time on the protein-protein interactions that occur between ciliary gating components and transiting cargoes during ciliary entry. We find that the nucleoporin Nup62 and the C termini of the nephronophthisis (NPHP) proteins NPHP4 and NPHP5 interact with the axoneme-associated kinesin-2 motor KIF17 and thus spatially map to the inner region of the ciliary gating zone. Nup62 and NPHP4 exhibit rapid turnover at the transition zone and thus define dynamic components of the gate. We find that B9D1, AHI1, and the N termini of NPHP4 and NPHP5 interact with the transmembrane protein SSTR3 and thus spatially map to the outer region of the ciliary gating zone. B9D1, AHI1, and NPHP5 exhibit little to no turnover at the transition zone and thus define components of a stable gating structure. These data provide the first comprehensive map of the molecular orientations of gating zone components along the inner-to-outer axis of the ciliary gating zone. These results advance our understanding of the functional roles of gating zone components in regulating ciliary protein composition.
初级纤毛的运动和信号功能需要一种独特的蛋白质和脂质组成,这是由位于纤毛底部的门控机制决定的。几个蛋白质复合物定位于门控区,可能调节纤毛蛋白组成;然而,纤毛门控的机制和门控成分的动力学在很大程度上是未知的。在这里,我们使用 BiFC(双分子荧光互补)测定法,并首次报告了在纤毛进入过程中发生在纤毛门控成分和转运货物之间的蛋白质-蛋白质相互作用。我们发现核孔蛋白 Nup62 和 NPHP 蛋白 NPHP4 和 NPHP5 的 C 末端与纤毛相关的驱动蛋白-2 运动蛋白 KIF17 相互作用,因此空间映射到纤毛门控区的内部区域。Nup62 和 NPHP4 在过渡区快速周转,因此定义了门的动态成分。我们发现 B9D1、AHI1 和 NPHP4 和 NPHP5 的 N 末端与跨膜蛋白 SSTR3 相互作用,因此空间映射到纤毛门控区的外部区域。B9D1、AHI1 和 NPHP5 在过渡区几乎没有周转,因此定义了稳定门控结构的成分。这些数据提供了门控区成分沿纤毛门控区的内到外轴的分子取向的第一个综合图谱。这些结果推进了我们对门控区成分在调节纤毛蛋白组成中的功能作用的理解。