Suppr超能文献

手持式光学相干断层扫描血管造影术

Handheld optical coherence tomography angiography.

作者信息

Yang Jianlong, Liu Liang, Campbell J Peter, Huang David, Liu Gangjun

机构信息

Casey Eye Institute, Oregon Health and Science University, 3375 SW Terwilliger Blvd, Portland, OR 97239, USA.

出版信息

Biomed Opt Express. 2017 Mar 22;8(4):2287-2300. doi: 10.1364/BOE.8.002287. eCollection 2017 Apr 1.

Abstract

We developed a handheld optical coherence tomography angiography (OCTA) system using a 100-kHz swept-source laser. The handheld probe weighs 0.4 kg and measures 20.6 × 12.8 × 4.6 cm. The system has dedicated features for handheld operation. The probe is equipped with a mini iris camera for easy alignment. Real-time display of the OCT and cross-sectional OCT images in the system allows accurately locating the imaging target. Fast automatic focusing was achieved by an electrically tunable lens controlled by a golden-section search algorithm. An extended axial imaging range of 6 mm allows easy alignment. A registration algorithm using cross-correlation to register adjacent OCT B-frames with propagation from the central frame was used to effectively minimize motion artifacts in volumetric OCTA images captured in relatively short durations of 1 and 2.1 seconds. 2.5 × 2.5 mm (200 × 200 pixels) and 3.5 × 3.5 mm (300 × 300 pixels) retinal angiograms were demonstrated on two awake adult human subjects without the use of any mydriatic eye drops.

摘要

我们使用100kHz扫频光源激光器开发了一种手持式光学相干断层扫描血管造影(OCTA)系统。该手持式探头重0.4kg,尺寸为20.6×12.8×4.6cm。该系统具有专门用于手持式操作的功能。探头配备了一个小型虹膜相机,便于对准。系统中OCT和横截面OCT图像的实时显示可精确确定成像目标的位置。通过由黄金分割搜索算法控制的电可调透镜实现了快速自动聚焦。6mm的扩展轴向成像范围便于对准。使用互相关来配准相邻OCT B帧并从中心帧进行传播的配准算法,用于有效减少在1秒和2.1秒的相对短时间内采集的体积OCTA图像中的运动伪影。在两名清醒的成年人类受试者上展示了2.5×2.5mm(200×200像素)和3.5×3.5mm(300×300像素)的视网膜血管造影,且未使用任何散瞳眼药水。

相似文献

1
Handheld optical coherence tomography angiography.
Biomed Opt Express. 2017 Mar 22;8(4):2287-2300. doi: 10.1364/BOE.8.002287. eCollection 2017 Apr 1.
2
Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror.
Biomed Opt Express. 2013 Dec 20;5(1):293-311. doi: 10.1364/BOE.5.000293.
4
Handheld swept-source optical coherence tomography with angiography in awake premature neonates.
Quant Imaging Med Surg. 2019 Sep;9(9):1495-1502. doi: 10.21037/qims.2019.09.01.
5
Extended axial imaging range, widefield swept source optical coherence tomography angiography.
J Biophotonics. 2017 Nov;10(11):1464-1472. doi: 10.1002/jbio.201600325. Epub 2017 May 11.
7
Circumferential optical coherence tomography angiography imaging of the swine esophagus using a micromotor balloon catheter.
Biomed Opt Express. 2016 Jul 5;7(8):2927-42. doi: 10.1364/BOE.7.002927. eCollection 2016 Aug 1.
8
Handheld simultaneous scanning laser ophthalmoscopy and optical coherence tomography system.
Biomed Opt Express. 2013 Oct 1;4(11):2307-21. doi: 10.1364/BOE.4.002307. eCollection 2013.
9
High-speed and widefield handheld swept-source OCT angiography with a VCSEL light source.
Biomed Opt Express. 2021 May 20;12(6):3553-3570. doi: 10.1364/BOE.425411. eCollection 2021 Jun 1.

引用本文的文献

1
Widefield OCT angiography.
Prog Retin Eye Res. 2025 Jul;107:101378. doi: 10.1016/j.preteyeres.2025.101378. Epub 2025 Jun 13.
2
Sensor-driven digital motion correction of robotically-aligned optical coherence tomography retinal volumes.
Biomed Opt Express. 2025 Mar 26;16(4):1616-1637. doi: 10.1364/BOE.551186. eCollection 2025 Apr 1.
3
Advances in OCT Angiography.
Transl Vis Sci Technol. 2025 Mar 3;14(3):6. doi: 10.1167/tvst.14.3.6.
4
Applications of optical coherence tomography angiography in glaucoma: current status and future directions.
Front Med (Lausanne). 2024 Sep 19;11:1428850. doi: 10.3389/fmed.2024.1428850. eCollection 2024.
5
Robotic Optical Coherence Tomography of Human Subjects with Posture-Invariant Head and Eye Alignment in Six Degrees of Freedom.
Int Symp Med Robot. 2023 Apr;2023. doi: 10.1109/ismr57123.2023.10130250. Epub 2023 May 25.
7
Panretinal handheld OCT angiography for pediatric retinal imaging.
Biomed Opt Express. 2024 Apr 29;15(5):3412-3424. doi: 10.1364/BOE.520739. eCollection 2024 May 1.
8
Handheld contact-type OCT and color fundus system for retinal imaging.
Biomed Opt Express. 2024 Mar 29;15(4):2681-2696. doi: 10.1364/BOE.520735. eCollection 2024 Apr 1.
9
The Role of Ophthalmology in Tele-Stroke Consults for Triaging Acute Vision Loss.
Open Access Emerg Med. 2024 Feb 5;16:45-56. doi: 10.2147/OAEM.S395588. eCollection 2024.
10
Implementation of optical coherence tomography in retinopathy of prematurity screening.
Curr Opin Ophthalmol. 2024 May 1;35(3):252-259. doi: 10.1097/ICU.0000000000001030. Epub 2024 Jan 11.

本文引用的文献

1
cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe.
Nat Photonics. 2016;10:580-584. doi: 10.1038/nphoton.2016.141. Epub 2016 Aug 1.
2
A review of optical coherence tomography angiography (OCTA).
Int J Retina Vitreous. 2015 Apr 15;1:5. doi: 10.1186/s40942-015-0005-8. eCollection 2015.
3
Split-spectrum phase-gradient optical coherence tomography angiography.
Biomed Opt Express. 2016 Jul 11;7(8):2943-54. doi: 10.1364/BOE.7.002943. eCollection 2016 Aug 1.
4
Calibration of optical coherence tomography angiography with a microfluidic chip.
J Biomed Opt. 2016 Aug 1;21(8):86015. doi: 10.1117/1.JBO.21.8.086015.
5
Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram.
Biomed Opt Express. 2016 Jun 27;7(7):2823-36. doi: 10.1364/BOE.7.002823. eCollection 2016 Jul 1.
6
Optical Coherence Tomography Angiography.
Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT27-36. doi: 10.1167/iovs.15-19043.
7
Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography.
J Biomed Opt. 2015;20(12):126002. doi: 10.1117/1.JBO.20.12.126002.
9
Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma.
JAMA Ophthalmol. 2015 Sep;133(9):1045-52. doi: 10.1001/jamaophthalmol.2015.2225.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验