Krypotos Angelos-Miltiadis, Blanken Tessa F, Arnaudova Inna, Matzke Dora, Beckers Tom
Utrecht University.
Netherlands Institute for Neuroscience.
J Exp Psychopathol. 2017;8(2):140-157. doi: 10.5127/jep.057316.
The principal goals of experimental psychopathology (EPP) research are to offer insights into the pathogenic mechanisms of mental disorders and to provide a stable ground for the development of clinical interventions. The main message of the present article is that those goals are better served by the adoption of Bayesian statistics than by the continued use of null-hypothesis significance testing (NHST). In the first part of the article we list the main disadvantages of NHST and explain why those disadvantages limit the conclusions that can be drawn from EPP research. Next, we highlight the advantages of Bayesian statistics. To illustrate, we then pit NHST and Bayesian analysis against each other using an experimental data set from our lab. Finally, we discuss some challenges when adopting Bayesian statistics. We hope that the present article will encourage experimental psychopathologists to embrace Bayesian statistics, which could strengthen the conclusions drawn from EPP research.
实验精神病理学(EPP)研究的主要目标是深入了解精神障碍的致病机制,并为临床干预的发展提供坚实基础。本文的主要观点是,采用贝叶斯统计比继续使用零假设显著性检验(NHST)能更好地实现这些目标。在文章的第一部分,我们列出了NHST的主要缺点,并解释了为什么这些缺点限制了从EPP研究中得出的结论。接下来,我们强调贝叶斯统计的优点。为了说明这一点,我们使用实验室的一个实验数据集将NHST和贝叶斯分析进行对比。最后,我们讨论采用贝叶斯统计时面临的一些挑战。我们希望本文能鼓励实验精神病理学家接受贝叶斯统计,这可以加强从EPP研究中得出的结论。