Suppr超能文献

无需对晶圆进行蚀刻的电路特征纳米级X射线成像。

Nanoscale x-ray imaging of circuit features without wafer etching.

作者信息

Deng Junjing, Hong Young Pyo, Chen Si, Nashed Youssef S G, Peterka Tom, Levi Anthony J F, Damoulakis John, Saha Sayan, Eiles Travis, Jacobsen Chris

机构信息

Applied Physics, Northwestern University, Evanston, IL 60208, USA.

Department of Physics & Astronomy, Northwestern University, Evanston, IL 60208, USA.

出版信息

Phys Rev B. 2017 Mar 1;95(10). doi: 10.1103/PhysRevB.95.104111. Epub 2017 Mar 24.

Abstract

Modern integrated circuits (ICs) employ a myriad of materials organized at nanoscale dimensions, and certain critical tolerances must be met for them to function. To understand departures from intended functionality, it is essential to examine ICs as manufactured so as to adjust design rules, ideally in a non-destructive way so that imaged structures can be correlated with electrical performance. Electron microscopes can do this on thin regions, or on exposed surfaces, but the required processing alters or even destroys functionality. Microscopy with multi-keV x-rays provides an alternative approach with greater penetration, but the spatial resolution of x-ray imaging lenses has not allowed one to see the required detail in the latest generation of ICs. X-ray ptychography provides a way to obtain images of ICs without lens-imposed resolution limits, with past work delivering 20-40 nm resolution on thinned ICs. We describe a simple model for estimating the required exposure, and use it to estimate the future potential for this technique. Here we show for the first time that this approach can be used to image circuit detail through an unprocessed 300 m thick silicon wafer, with sub-20 nm detail clearly resolved after mechanical polishing to 240 m thickness was used to eliminate image contrast caused by Si wafer surface scratches. By using continuous x-ray scanning, massively parallel computation, and a new generation of synchrotron light sources, this should enable entire non-etched ICs to be imaged to 10 nm resolution or better while maintaining their ability to function in electrical tests.

摘要

现代集成电路(IC)采用了多种在纳米尺度上组织的材料,并且必须满足某些关键公差才能正常工作。为了理解与预期功能的偏差,至关重要的是检查制造好的集成电路,以便调整设计规则,理想情况下以非破坏性方式进行,从而使成像结构能够与电气性能相关联。电子显微镜可以在薄区域或暴露表面上做到这一点,但所需的处理会改变甚至破坏功能。多keV X射线显微镜提供了一种具有更大穿透能力的替代方法,但X射线成像透镜的空间分辨率不允许人们在最新一代集成电路中看到所需的细节。X射线叠层成像提供了一种在没有透镜分辨率限制的情况下获取集成电路图像的方法,过去的工作在减薄的集成电路上实现了20 - 40纳米的分辨率。我们描述了一个用于估计所需曝光量的简单模型,并使用它来估计该技术未来的潜力。在这里,我们首次展示了这种方法可用于通过未处理的300微米厚硅晶片对电路细节进行成像,在机械抛光至240微米厚度以消除由硅晶片表面划痕引起的图像对比度后,清晰分辨出了亚20纳米的细节。通过使用连续X射线扫描、大规模并行计算和新一代同步辐射光源,这应该能够对整个未蚀刻的集成电路进行成像,分辨率达到10纳米或更高,同时保持它们在电气测试中的功能。

相似文献

6
Synchrotron-radiation X-ray topography of surface strain in large-diameter silicon wafers.
J Synchrotron Radiat. 2002 May 1;9(Pt 3):166-8. doi: 10.1107/s0909049502003448. Epub 2002 Apr 25.

引用本文的文献

3
Upscaling X-ray nanoimaging to macroscopic specimens.将X射线纳米成像扩展至宏观标本。
J Appl Crystallogr. 2021 Feb 19;54(Pt 2):386-401. doi: 10.1107/S1600576721000194. eCollection 2021 Apr 1.
4
Broadband X-ray ptychography using multi-wavelength algorithm.使用多波长算法的宽带X射线叠层成像术
J Synchrotron Radiat. 2021 Jan 1;28(Pt 1):309-317. doi: 10.1107/S1600577520014708.

本文引用的文献

2
Fly-scan ptychography.飞行扫描叠层成像术。
Sci Rep. 2015 Mar 13;5:9074. doi: 10.1038/srep09074.
3
Parallel ptychographic reconstruction.并行叠层成像重建
Opt Express. 2014 Dec 29;22(26):32082-97. doi: 10.1364/OE.22.032082.
10
Phase retrieval algorithms: a comparison.相位恢复算法:比较
Appl Opt. 1982 Aug 1;21(15):2758-69. doi: 10.1364/AO.21.002758.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验