Suppr超能文献

利用爆发式叠层相位成像术实现高性能 4nm 分辨率 X 射线断层摄影。

High-performance 4-nm-resolution X-ray tomography using burst ptychography.

机构信息

Paul Scherrer Institute, Villigen, Switzerland.

Mineral Resources, CSIRO, Clayton, Victoria, Australia.

出版信息

Nature. 2024 Aug;632(8023):81-88. doi: 10.1038/s41586-024-07615-6. Epub 2024 Jul 31.

Abstract

Advances in science, medicine and engineering rely on breakthroughs in imaging, particularly for obtaining multiscale, three-dimensional information from functional systems such as integrated circuits or mammalian brains. Achieving this goal often requires combining electron- and photon-based approaches. Whereas electron microscopy provides nanometre resolution through serial, destructive imaging of surface layers, ptychographic X-ray computed tomography offers non-destructive imaging and has recently achieved resolutions down to seven nanometres for a small volume. Here we implement burst ptychography, which overcomes experimental instabilities and enables much higher performance, with 4-nanometre resolution at a 170-times faster acquisition rate, namely, 14,000 resolution elements per second. Another key innovation is tomographic back-propagation reconstruction, allowing us to image samples up to ten times larger than the conventional depth of field. By combining the two innovations, we successfully imaged a state-of-the-art (seven-nanometre node) commercial integrated circuit, featuring nanostructures made of low- and high-density materials such as silicon and metals, which offer good radiation stability and contrast at the selected X-ray wavelength. These capabilities enabled a detailed study of the chip's design and manufacturing, down to the level of individual transistors. We anticipate that the combination of nanometre resolution and higher X-ray flux at next-generation X-ray sources will have a revolutionary impact in fields ranging from electronics to electrochemistry and neuroscience.

摘要

科学、医学和工程学的进步依赖于成像技术的突破,特别是对于集成电路或哺乳动物大脑等功能系统获取多尺度、三维信息而言。实现这一目标通常需要结合电子和光子方法。虽然电子显微镜通过对表面层的连续破坏性成像提供了纳米级分辨率,但相衬 X 射线计算层析成像提供了非破坏性成像,并且最近已经实现了小体积下分辨率低至七纳米的分辨率。在这里,我们实现了突发相衬技术,该技术克服了实验不稳定性,实现了更高的性能,在 170 倍的更快采集速率下实现了 4 纳米的分辨率,即每秒 14,000 个分辨率单元。另一个关键的创新是层析反投影重建,它允许我们对比传统景深大十倍的样本进行成像。通过结合这两项创新,我们成功地对一款最先进的(七纳米节点)商业集成电路进行了成像,该集成电路具有由低和高密度材料(如硅和金属)制成的纳米结构,这些材料在所选的 X 射线波长下具有良好的辐射稳定性和对比度。这些功能使我们能够对芯片的设计和制造进行详细研究,甚至可以研究到单个晶体管的水平。我们预计,下一代 X 射线源的纳米分辨率和更高的 X 射线通量的结合将在从电子学到电化学和神经科学等领域产生革命性的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验