Bonvin Debora, Aschauer Ulrich J, Bastiaansen Jessica A M, Stuber Matthias, Hofmann Heinrich, Mionić Ebersold Marijana
Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
Department of Chemistry and Biochemistry, University of Bern, Bern 3012, Switzerland.
Nanomaterials (Basel). 2017 Jul 29;7(8):202. doi: 10.3390/nano7080202.
Pyridoxal 5'-phosphate (PLP) is the most important cofactor of vitamin B₆-dependent enzymes, which catalyses a wide range of essential body functions (e.g., metabolism) that could be exploited to specifically target highly metabolic cells, such as tumour metastatic cells. However, the use of PLP as a simultaneous coating and targeting molecule, which at once provides colloidal stability and specific biological effects has not been exploited so far. Therefore, in this work iron oxide nanoparticles (IONPs) were coated by PLP at two different pH values to tune PLP bonding (e.g., orientation) at the IONP surface. The surface study, as well as calculations, confirmed different PLP bonding to the IONP surface at these two pH values. Moreover, the obtained PLP-IONPs showed different zeta potential, hydrodynamic radius and agglomeration state, and consequently different uptake by two metastatic-prostate-cancer cell lines (LnCaP and PC3). In LnCaP cells, PLP modified the morphology of IONP-containing intracellular vesicles, while in PC3 cells PLP impacted the amount of IONPs taken up by cells. Moreover, PLP-IONPs displayed high magnetic resonance imaging (MRI) ₂ relaxivity and were not toxic for the two studied cell lines, rendering PLP promising for biomedical applications. We here report the use of PLP simultaneously as a coating and targeting molecule, directly bound to the IONP surface, with the additional high potential for MRI detection.
磷酸吡哆醛(PLP)是维生素B₆依赖性酶最重要的辅助因子,它催化多种重要的身体功能(如新陈代谢),这些功能可被用于特异性靶向高代谢细胞,如肿瘤转移细胞。然而,将PLP用作同时具有包衣和靶向作用的分子,使其既能提供胶体稳定性又能产生特定生物学效应,这一点目前尚未得到应用。因此,在本研究中,在两个不同的pH值下用PLP包覆氧化铁纳米颗粒(IONPs),以调节PLP在IONP表面的结合(如取向)。表面研究以及计算结果证实,在这两个pH值下PLP与IONP表面的结合情况不同。此外,所得到的PLP-IONPs表现出不同的zeta电位、流体动力学半径和团聚状态,因此两种转移性前列腺癌细胞系(LnCaP和PC3)对其摄取情况也不同。在LnCaP细胞中,PLP改变了含IONP的细胞内囊泡的形态,而在PC3细胞中,PLP影响了细胞摄取IONPs的量。此外,PLP-IONPs显示出高的磁共振成像(MRI)₂弛豫率,并且对两种研究的细胞系均无毒,这使得PLP在生物医学应用方面具有前景。我们在此报告了PLP同时作为包衣和靶向分子直接结合到IONP表面的应用,以及其在MRI检测方面的额外高潜力。