Suppr超能文献

用于反扫视的随机早期反应、抑制和晚期作用(SERIA)模型。

The Stochastic Early Reaction, Inhibition, and late Action (SERIA) model for antisaccades.

作者信息

Aponte Eduardo A, Schöbi Dario, Stephan Klaas E, Heinzle Jakob

机构信息

Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology Zurich, Zurich, Switzerland.

Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom.

出版信息

PLoS Comput Biol. 2017 Aug 2;13(8):e1005692. doi: 10.1371/journal.pcbi.1005692. eCollection 2017 Aug.

Abstract

The antisaccade task is a classic paradigm used to study the voluntary control of eye movements. It requires participants to suppress a reactive eye movement to a visual target and to concurrently initiate a saccade in the opposite direction. Although several models have been proposed to explain error rates and reaction times in this task, no formal model comparison has yet been performed. Here, we describe a Bayesian modeling approach to the antisaccade task that allows us to formally compare different models on the basis of their evidence. First, we provide a formal likelihood function of actions (pro- and antisaccades) and reaction times based on previously published models. Second, we introduce the Stochastic Early Reaction, Inhibition, and late Action model (SERIA), a novel model postulating two different mechanisms that interact in the antisaccade task: an early GO/NO-GO race decision process and a late GO/GO decision process. Third, we apply these models to a data set from an experiment with three mixed blocks of pro- and antisaccade trials. Bayesian model comparison demonstrates that the SERIA model explains the data better than competing models that do not incorporate a late decision process. Moreover, we show that the early decision process postulated by the SERIA model is, to a large extent, insensitive to the cue presented in a single trial. Finally, we use parameter estimates to demonstrate that changes in reaction time and error rate due to the probability of a trial type (pro- or antisaccade) are best explained by faster or slower inhibition and the probability of generating late voluntary prosaccades.

摘要

反扫视任务是一种用于研究眼球运动自主控制的经典范式。它要求参与者抑制对视觉目标的反应性眼球运动,并同时向相反方向发起扫视。尽管已经提出了几种模型来解释该任务中的错误率和反应时间,但尚未进行正式的模型比较。在这里,我们描述了一种用于反扫视任务的贝叶斯建模方法,该方法使我们能够根据不同模型的证据进行正式比较。首先,我们基于先前发表的模型提供了动作(顺向和反向扫视)和反应时间的形式似然函数。其次,我们引入了随机早期反应、抑制和晚期动作模型(SERIA),这是一种新颖的模型,假设在反扫视任务中有两种不同的机制相互作用:早期的“执行/不执行”竞争决策过程和晚期的“执行/执行”决策过程。第三,我们将这些模型应用于一个实验数据集,该实验有三个顺向和反向扫视试验的混合块。贝叶斯模型比较表明,SERIA模型比不包含晚期决策过程的竞争模型能更好地解释数据。此外,我们表明,SERIA模型假设的早期决策过程在很大程度上对单个试验中呈现的线索不敏感。最后,我们使用参数估计来证明,由于试验类型(顺向或反向扫视)的概率导致的反应时间和错误率的变化,最好用更快或更慢的抑制以及产生晚期自主顺向扫视的概率来解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d3f/5555715/1f6eef88251d/pcbi.1005692.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验